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A Vertex Detector for the International Linear Collider

LCFI: Linear Collider Flavour Identification collaboration

Cos 6=0.96

- 800M channels of
-_-.','--'" 20um x 20um pixels.

<0.1% X, layer
thickness:; minimize
multiple scattering.

Ladders

Barrel 1 Barrel 2-5
L=100mm L=250mm

Gasket seal

Beam-Fipe

Sroine 1% of occupation on the innermost
foamCrostat layer. Fast readout, up to 50MHz;
20 readouts during 1ms bunch train.

Requires radiation hardness studies. 5



Serial CCD

 Serial readout

* Parallel shift register

* Three-phase device

* Two readout channels

* Up to 50MHz readout

« 2.1 Mpixels

« 12um x 12um pixel size




Charge Transfer for 3-phase CCD
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Background and its Implication for the CCD
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Estimation of Background Rates

Simulator SiD LDC GLD
CAIN/Jupiter hits/cm?/bx | 2.9 @omina) | 3.5 (tEsLa) | 0.5 @4mm radius, nominal)
GuineaPig hitS/sz/bX 2.3 (nominal) 3.0 (TESLA) 2.0 (20mm radius, nominal)

Results from simulations (T.Maruyama, C.Rimbault)

» 2820 bx/train

* 5 trains per second
* 107 seconds in the
“Snowmass year’

1.41-10"" bunchesl/year

Trap density (101%cm-3)
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Background and Trap Density

Parameter electrons neutrons
Expected
background average energy ~ 10 MeV ~ 1 MeV
rates for no. particles / bx / cm? 3.5 0.01
14 mm radius 1.6 -10°
fluence 0.5-1012 ' egE
from IP 1'1 09 Maruyama
Source 0.17 eV trap 0.44 eV trap
—~ . 11 -3 0 . 10 -3
Estimated Electrons 3-10"cm 3-10"0cm
~7.1-108cm-3 ~1.1-1019%¢cm-3
trap Neutrons cm cm
densities. ~4.5-108cm-3 ~7.0-10%cm-3
~4.1-101%m?-3
total ~3:10"cm-3
~3.7:1019¢cm-3
] Traps Trap density Electron capture o
Used in
0.17 eV 1-10""cm-3 1-10-14cm?2

simulations.

0.44 eV 1-10""cm3 3 -10-°%cm?




CCD simulation ISE-TCAD

. Charge transfered from pixel (n) to (n+1)
CTIl : Charge Transfer Inefficiency =

Charge entered the pixel (n)
- CTl vs. Temperature for different traps

- CTl vs. Clock frequency
- CTl vs. Voltage applied to gates
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Dapth (Mmicraons)

CCD simulation

Signal charge density Signal charge passed all gates and
entering pixel (n) trapped charge decreases from right

to left due to emission.
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CTl vs. Temp. and Freq. 0.17 eV Traps

0.09
0.08
0.07 Frequency
0.06 L Pependenge: |
. in peak region high
£ 005 freq. (faster
004 r transfer) and less
003 | time for traps to
‘ capture charge.
0.02 - Thus, increasing
0.01 L freq. results in
decreases CTI.
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High temperatures: emission time is very short, charge can be captured and
released during the same transfer. Low CTI.

Low temperatures: emission time is very long, charge can be captured but not
released during the same transfer. Low CTI if traps were filled before. 10



CTI (%)
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Optimum Operation Temperature
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CTIx107°
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Fill ratio is determined by the decay time between t=0s (when the traps
are filled) and the charged injection. CTl is reduced as expected for
partially filled traps.
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CTI Modelling

ISE-TCAD simulations: - takes detailed effects of charge
transfer into account
- large CPU time

Analytical CTI modelling: - very faster compared to ISE TCAD simulations

- provides insight into factors affecting CTI

- Traps undergo two basic processes:

\ /'  Traps capture electrons from the signal charge.
\ / * Electrons are emitted from filled traps.

- Processes occur at different rates. Governed by

Capture Emission

capture 7, and emission 7, time constants.

During transfer

Emission r = 1
// C Gnvthns
1 E —F
T, = exp(———+-)
o, X v,N . kT

After transfer 14



Comparison Between Models and
Simulations for 0.17eV Traps

CTI
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Simulations of Clock Voltage Induced CTI

CTl vs. applied voltage behaves as expected.

Simulated threshold around 1.8 V.
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Simulations of Voltage Induced CTI

Temperature Dependence

For the same
voltage on
gates
changes of
CTIl can be
observed
depending on
temperature.

Decrease of
electron
mobility with
rising
temperature.
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Summary

« ISE TCAD simulations and analytical modelling have been applied in
order to predict the Charge Transfer Inefficiency (CTI) for a three-phase
CCD detector.

« Expected radiation hardness is well understood as a function of
temperature and frequency.

* The optimal operation temperature has been determined where the
CTI expectation has a minimum.

 Results obtained from ISE TCAD simulation and analytical modelling
are compared. Good agreement has been found for the 0.17 eV traps,
but not for the 0.44 eV traps.

* The experience gained with the CCD358 simulation served already
much for the simulation of a CP-CCD with Column-Parallel readout. A
comparison with direct measurements of the CP-CCD is in preparation.
 Radiation hardness studies are an important aspect in the
development of a vertex detector for the ILC and new simulation for
a CP-CCD are in progress.
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