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LCFI: Linear Collider Flavour Identification collaboration

A Vertex Detector for the International Linear Collider

800M channels of
20µm × 20µm pixels.

< 0.1% X0 layer
thickness; minimize
multiple scattering.

1% of occupation on the innermost 
layer. Fast readout, up to 50MHz;
20 readouts during 1ms bunch train.

Requires radiation hardnessRequires radiation hardness studies.studies.
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Serial CCD

• Serial readout
• Parallel shift register
• Three-phase device
• Two readout channels
• Up to 50MHz readout
• 2.1 Mpixels
• 12µm × 12µm pixel size
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Charge Transfer for 3-phase CCD
Gates

p - Si substrate

SiO2

n - channel
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- collected charge

pixel (n) pixel (n-1)
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Direction of transfer

tim
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Electrons are collected 
from ionization of 
incident particle.

Charge is transferred 
inside n-channel to the 
output by applying
voltage changes to 
gates.
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Background and its Implication for the CCD
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- Oxygen
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Vacancy 
production

Radiation damage produces 
energy levels (traps) within the 
band gap.

Traps capture electrons from 
the conduction band which are 
later released.Vacancy-Oxygen

Ec = -0.17eV 
Vacancy-Phosphorus

Ec = -0.44eV

IP
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2.0 (20mm radius, nominal)3.0 (TESLA)2.3 (nominal)GuineaPig hits/cm2/bx

0.5 (24mm radius, nominal)3.5 (TESLA)2.9 (nominal)CAIN/Jupiter hits/cm2/bx

GLDLDCSiDSimulator

1.41·1011 bunches/year

Estimation of Background Rates

Results from simulations (T.Maruyama, C.Rimbault)

• 2820 bx/train 
• 5 trains per second 
• 107 seconds in the 
`Snowmass year’
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1.6 ·109
Vogel

1·109 
Maruyama

0.5·1012fluence

0.013.5no. particles / bx / cm2

~ 1 MeV~ 10 MeVaverage  energy
neutronselectronsParameter

~1.1·1010cm-3

~7.0·109cm-3

~7.1·108cm-3

~4.5·108cm-3
Neutrons

~4.1·1010cm-3

~3.7·1010cm-3
~3·1011cm-3total

~ 3 · 1010 cm-3~ 3 · 1011 cm-3Electrons
0.44 eV trap0.17 eV trapSource

Background and Trap Density

Expected 
background 
rates for 
14 mm radius 
from IP.

Estimated 
trap 
densities.

3 · 10-15cm21 · 1011cm-30.44 eV
1 · 10-14 cm21 · 1011 cm-30.17 eV

Electron capture σTrap densityTraps
Used in  
simulations.
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CCD simulation     ISE-TCAD

Detector 
structure and 
potential at 
gates after 

initialization. 
The signal
charge is 

injected under 
gate 2.

CTI : Charge Transfer Inefficiency =
Charge entered the pixel (n)

Charge transfered from pixel (n) to (n+1)

- CTI vs. Temperature for different traps
- CTI vs. Clock frequency
- CTI vs. Voltage applied to gates
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CCD simulation

Signal charge density 
entering pixel (n)

Signal charge passed all gates and 
trapped charge decreases from right 

to left due to emission.
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CTI vs. Temp. and Freq. 0.17 eV Traps

High temperatures: emission time is very short, charge can be captured and 
released during the same transfer. Low CTI.

Low temperatures: emission time is very long, charge can be captured but not 
released during the same transfer. Low CTI if traps were filled before.

Frequency 
Dependence:
in peak region high 
freq. (faster 
transfer) and less 
time for traps to 
capture charge. 
Thus, increasing 
freq. results in 
decreases CTI.
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CTI vs. Temp. and Freq. 0.44 eV Traps
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Optimum 
temperature

Optimum Operation Temperature
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Occupancy Effects

Fill ratio is determined by the decay time between t=0s (when the traps 
are filled) and the charged injection. CTI is reduced as expected for 
partially filled traps.
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CTI Modelling 
ISE-TCAD simulations: - takes detailed effects of charge 

transfer into account
- large CPU time

Analytical CTI modelling: - very faster compared to ISE TCAD simulations
- provides insight into factors affecting CTI
- Traps undergo two basic processes:

• Traps capture electrons from the signal charge.
• Electrons are emitted from filled traps.

- Processes occur at different rates. Governed by 
capture τc and emission τe time constants.

Trapped charge

Trapped charge

Capture Emission

Emission
During transfer

After transfer

sthn
c nvσ
τ 1

=

)exp(1
kT
EE

NvX
tc

cthnn
e

−
=
σ

τ



15

Comparison Between Models and 
Simulations for 0.17eV Traps

Comparison between models and full ISE TCAD simulation



16

Analytic Model vs. ISE TCAD Simulations 
for 0.17eV and 0.44 eV Traps
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Simulations of Clock Voltage Induced CTI

Voltage applied to gates [V]

C
TI

CTI vs. applied voltage behaves as expected. 

Simulated threshold around 1.8 V. 

Expected 
simulation 
uncertainty 
around 10-7
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Simulations of Voltage Induced CTI 
Temperature Dependence

Temperature [K]

C
TI

For the same 
voltage on 
gates 
changes of 
CTI can be 
observed 
depending on 
temperature.  

Decrease of 
electron 
mobility with 
rising 
temperature. 
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Summary 

• ISE TCAD simulations and analytical modelling have been applied in 
order to predict the Charge Transfer Inefficiency (CTI) for a three-phase 
CCD detector.
• Expected radiation hardness is well understood as a function of
temperature and frequency.
• The optimal operation temperature has been determined where the
CTI expectation has a minimum.
• Results obtained from ISE TCAD simulation and analytical modelling 
are compared. Good agreement has been found for the 0.17 eV traps, 
but not for the 0.44 eV traps.
• The experience gained with the CCD58 simulation served already 
much for the simulation of a CP-CCD with Column-Parallel readout. A 
comparison with direct measurements of the CP-CCD is in preparation.
• Radiation hardness studies are an important aspect in the Radiation hardness studies are an important aspect in the 
development of a vertex detector for the ILCdevelopment of a vertex detector for the ILC and new simulation for and new simulation for 
a CPa CP--CCD are in progress. CCD are in progress. 


