

Simulation of the Temperature Dependence of the Charge Transfer Inefficiency in a High-Speed CCD

André Sopczak

Lancaster University: C. Bowdery, G. Davies, M. Koziel, A. Sopczak, J. Walder

Rutherford Appleton Laboratory: C. Damerell, K. Stefanov, S. Worm

Liverpool University: T. Greenshaw, K. Hayrapetyan, T. Tikkanen, T. Woolliscroft

Biskra University: K. Bekhouche, L. Dehimi

A Vertex Detector for the International Linear Collider

LCFI: Linear Collider Flavour Identification collaboration

Requires radiation hardness studies.

Serial CCD

- Parallel shift register
- Three-phase device
- Two readout channels
- Up to 50MHz readout
- 2.1 Mpixels
- 12μm × 12μm pixel size

Charge Transfer for 3-phase CCD

Electrons are collected from ionization of incident particle.

Charge is transferred inside n-channel to the output by applying voltage changes to gates.

Background and its Implication for the CCD

Estimation of Background Rates

Simulator	SiD	LDC	GLD
CAIN/Jupiter hits/cm ² /bx	2.9 (nominal)	3.5 (TESLA)	0.5 (24mm radius, nominal)
GuineaPig hits/cm ² /bx	2.3 (nominal)	3.0 (TESLA)	2.0 (20mm radius, nominal)

Results from simulations (T.Maruyama, C.Rimbault)

- 2820 bx/train
- 5 trains per second
- 10⁷ seconds in the `Snowmass year'

1.41-10¹¹ bunches/year

Background and Trap Density

Expected background rates for 14 mm radius from IP.

Parameter	electrons	neutrons
average energy	~ 10 MeV	~ 1 MeV
no. particles / bx / cm²	3.5	0.01
fluence	0.5·10 ¹²	1.6 ·10 ⁹ _{Vogel} 1·10 ⁹ _{Maruyama}

Estimated trap densities.

Source	0.17 eV trap	0.44 eV trap
Electrons	~ 3 · 10 ¹¹ cm ⁻³	~ 3 · 10 ¹⁰ cm ⁻³
Neutrons	~7.1·10 ⁸ cm ⁻³	~1.1·10 ¹⁰ cm ⁻³
	~4.5·10 ⁸ cm ⁻³	~7.0·10 ⁹ cm ⁻³
total	2 1011am-3	~4.1·10 ¹⁰ cm ⁻³
	~3·10 ¹¹ cm ⁻³	~3.7·10 ¹⁰ cm ⁻³

Used in simulations.

Traps	Trap density	Electron capture σ
0.17 eV	1 · 10 ¹¹ cm ⁻³	1 · 10 ⁻¹⁴ cm ²
0.44 eV	1 · 10 ¹¹ cm ⁻³	3 · 10 ⁻¹⁵ cm ²

CCD simulation ISE-TCAD

Charge transfered from pixel (n) to (n+1)

CTI: Charge Transfer Inefficiency =

Charge entered the pixel (n)

- CTI vs. Temperature for different traps
- CTI vs. Clock frequency
- CTI vs. Voltage applied to gates

Detector
structure and
potential at
gates after
initialization.
The signal
charge is
injected under
gate 2.

CCD simulation

Signal charge density entering pixel (n)

Signal charge passed all gates and trapped charge decreases from right to left due to emission.

CTI vs. Temp. and Freq. 0.17 eV Traps

High temperatures: emission time is very short, charge can be captured and released during the same transfer. Low CTI.

Low temperatures: emission time is very long, charge can be captured but not released during the same transfer. Low CTI if traps were filled before.

CTI vs. Temp. and Freq. 0.44 eV Traps

Optimum Operation Temperature

Occupancy Effects

Fill ratio is determined by the decay time between t=0s (when the traps are filled) and the charged injection. CTI is reduced as expected for partially filled traps.

CTI Modelling

ISE-TCAD simulations: - takes detailed effects of charge transfer into account

- large CPU time

- Capture **Emission Trapped charge**
- **Analytical CTI modelling:** very faster compared to ISE TCAD simulations
 - provides insight into factors affecting CTI
 - Traps undergo two basic processes:
 - Traps capture electrons from the signal charge.
 - Electrons are emitted from filled traps.
 - Processes occur at different rates. Governed by capture τ_c and emission τ_e time constants.

During transfer

$$\tau_c = \frac{1}{\sigma_n v_{th} n_s}$$

$$\tau_e = \frac{1}{\sigma_n X_n v_{th} N_c} \exp(\frac{E_c - E_t}{kT})$$

Comparison Between Models and Simulations for 0.17eV Traps

Analytic Model vs. ISE TCAD Simulations for 0.17eV and 0.44 eV Traps

Simulations of Clock Voltage Induced CTI

CTI vs. applied voltage behaves as expected.

Simulated threshold around 1.8 V.

Expected simulation uncertainty around 10⁻⁷

Simulations of Voltage Induced CTI Temperature Dependence

Summary

- ISE TCAD simulations and analytical modelling have been applied in order to predict the Charge Transfer Inefficiency (CTI) for a three-phase CCD detector.
- Expected radiation hardness is well understood as a function of temperature and frequency.
- The optimal operation temperature has been determined where the CTI expectation has a minimum.
- Results obtained from ISE TCAD simulation and analytical modelling are compared. Good agreement has been found for the 0.17 eV traps, but not for the 0.44 eV traps.
- The experience gained with the CCD58 simulation served already much for the simulation of a CP-CCD with Column-Parallel readout. A comparison with direct measurements of the CP-CCD is in preparation.
- Radiation hardness studies are an important aspect in the development of a vertex detector for the ILC and new simulation for a CP-CCD are in progress.