Determination of Track Properties Using GEM-TimePix Setup

Albert-Ludwigs-University Freiburg

A. Bamberger, K. Desch,
M. Hauschild, U. Renz,
M. Titov, N. Vlasov,
P. Wienemann,
S. Zimmermann, A. Zwerger

Linear Collider Workshop, DESY, May 30 - June 3, 2007

OUTLINE:

- □ DESY test beam setup
- ☐ Point resolution as function of drift length
- ☐ Results with different cluster algorithms
- ☐ (near) Future plans

GEM – Gas Electron Multiplier

F. Sauli, Nucl. Instrum. Methods A386(1997)531
F. Sauli, http://www.cern.ch/GDD

- Thin metal-coated polymer foil chemically pierced to have high density of holes (technology developed at CERN)
- 5 μm Cu on 50 μm Kapton; 70 μm holes at 140 μm pitch
- gas amplification up to 10⁵ achievable with Ar/CO₂ (7/3)
- minimised positive ion feedback

MediPix2 and TimePix chip

- MediPix2 and TimePix surface of 14x14 mm²; pixel size of 55x55 μm²
- TimePix clock distributed throughout the entire chip. Register on each pixel counts the number of clocks cycles depending on chosen mode for each pixel this mode can be set individually
- ➤ In TIME-mode the cycles are counted from the point when signal crosses threshold till a common stop by gate signal ("Fast shutter")
- > "Time-Over-Threshold" (TOT-mode) records clock cycles as long as the pulse is above threshold
- ➤ Mixed Mode (MM) 50% of pixels in TIME and 50% in TOT-mode

Maximum number of counts is limited in this measurement by chosen gate width of 12.6 µm or 600 counts at a given clock frequency of 48MHz

The Test Beam Setup

• Gas tight box contains GEMs, resistor chain, TimePix and MediPix2 chip and readout electronics of pads

Si-telescope

- The electron beam is defined by trigger scintillating counters of 1×1.5 cm² in size and a Si-telescope with 3 planes of strips allowing measurement of the xcoordinate in front and behind the GEM, and for the y-coordinate measurement in front of the detector
- The effective readout pitch of Si-telescope is 50 μm

Correlation of TimePix data and Si-telescope

MediPix2 pixels (55µm)

Correlating the data acquisition of the beam telescope and the MediPix2 (x-axis) allows the determination of the resolution as a function of the drift distance

Drift Velocity

- Drift velocity determined using TIME mode and drift distance from Silicon Telescope for He/CO₂ and Ar/CO₂
- In TIME-mode time information for a cluster shows dispersion start time depends on the pulse height. A "time walk correction" is applied according to the cluster size, as it's suggested by MM mode:

$$\Delta = 1/(A + B \cdot ClusterSize) + C$$

Cluster Reconstruction and Point Resolution

Three clustering methods:

- Contiguous areas: applicable for any mode - TIME or TOT
- Cluster definition using charge deposition:
- "Saddle Point"- point line for secondary maximum in projection transverse to track. Rectangular dividing line between merged clusters at the saddle point
- "island" clustering (exploited from ZEUS calorimetry); next slide

"Island" Clustering for TOT mode

- A pixel with the highest TOT count is the starting point
- Then the adjacent pixels with the highest nonzero counts are connected to the starting pixel if they have no neighbor with a higher TOT value. Also the pixels next to the nearest neighbors are connected
- The procedure is repeated for each pixel to produce a unique assignment of pixels to clusters

"Island" Clustering

"Island" Clustering

TOT Event Clustered with "Island" method

Dependence of Point Resolution from Drift Length

- σ_{mean} variance of the mean position of ionization cluster centers
- D_t transverse diffusion coefficient
- n^{el}_{cl} number of primary electrons per cluster
- y drift length
- σ_0 smallest achievable resolution for a given configuration

$$\sigma_{mean}^2 = \sigma_0^2 + \frac{D_t^2 \cdot y}{n_{cl}^{el}}$$

Border points are affected by remaining background

Point Resolution vs. Drift Length for Different Clustering Methods

Point Resolution vs. Drift Length for "Island" Clustering

- Slope increases due to increase of frequency of primary one-electron clusters in He (expected ½)
- Higher efficiency of cluster reconstruction

Cleaning Background Events

The major background type for analysis is doubletrack events at TimePix. Double track events mostly uncorrelated with Silicone telescope

- Remove double-track events at TimePix with a projection along tracks
- Clean mismatch events using the "xx-correlation" between TimePix and Sil. tel.
- Using TIME information; was not used yet!

Point Resolution vs. Drift Length for "Saddle Point" Clustering

Ar/CO₂

 $a = D_t^2/n_{el}^{cl}$

- 3-point resolution is less sensitive to kinks in the track
- Good agreement between both methods

Mean number of clusters ~ 12

Point Resolution vs. Drift Length for "Saddle Point" Clustering

Mean number of clusters ~ 12

DATA vs. Simulations (Ar/CO₂)

Largest disagreement at highest drift distance ~ 15 %

DATA vs. Simulations (He/CO₂)

He/CO₂

a = D_t²/n_{el}^{cl}
"Saddle
Point"
clustering

Largest disagreement at highest drift distance ~ 15 %

GEM Substructure

- Projection along the track (x-projection); first drift bin near upper GEM
- Use Fourier transforms periodic structure at 1/8.39=~119 μm
- No structure for higher drift distances (> 1 mm) has been observed
- No structure has been observed for transverse to beam projection (pitch here is 70 µm)!

Analyses Result Summary

		DATA		Simulations	
	Gas	σ_0	D _t ² /n ^{el} cl	σ_0	D _t ² /n ^{el} _{cl}
"Island"	Ar	22.2+/-0.8	519+/-12		
	Не	25.6+/1.0	675+/-16		
	Ar	18.4+/-2.7	467+/-36	15.2+/-3.8	726+/-41
"Saddle		18.4+/-3.1	555+/-41	15.8+/-4.8	866+/-52
Point"	He	27.1+/-4.9	547+/-78	19.4+/-4.0	989+/-54
		25.6+/-6.2	696+/-95	22.4+/-4.2	1167+/-65

*

3-point resolution method

Conclusions and Future Plans

- Excellent performance of TimePix and very good stability of GEM-MediPix2/TimePix setup at test beam condition
- Two clustering methods have been established to resolve more clusters per track. The tracks are getting more contiguous with an increase of HV; therefore it's important to decompose overlapping areas
- The results of spatial resolution measurement with different methods are giving basically the same result
- New test beam séance in DESY with different GEM orientation is necessary to ensure that achieved resolution (σ_0) is still dependant on pitch discreteness of GEMs. Check if achieved σ_0 can be improved by:
- using proper orientation of GEM with respect of tracks and/or reducing pitch of GEM holes
- The disagreement with simulation is to be investigated further