A Silicon-Tungsten ECal with Integrated Electronics for the ILC -- status

Baseline configuration:

- transverse seg.:
 13 mm² pixels
- longitudinal: $(20 \times 5/7 \times_0)$ + $(10 \times 10/7 \times_0)$ $\Rightarrow 17\%/\text{sqrt}(E)$
- 1 mm readout gaps ⇒ 13 mm effective Moliere radius

Transverse Segmentation (3.6mm)² 20 + 10 Longitudinal Samples Energy Resolution ~17%/E ^{1/2}

Currently optimized for the SiD concept

Si/W ECal R&D Collaboration

M. Breidenbach, D. Freytag, N. Graf, R. Herbst, G. Haller, J. Jaros Stanford Linear Accelerator Center

J. Brau, R. Frey, D. Strom, undergraduates *U. Oregon*

V. Radeka *Brookhaven National Lab*

- B. Holbrook, R. Lander, M. Tripathi *UC Davis*
- S. Adloff, F. Cadoux, J. Jacquemier, Y. Karyotakis LAPP Annecy

- KPiX readout chip
- downstream readout
- detector, cable development
- mechanical design and integration
- detector development
- readout electronics
- readout electronics
- cable development
- bump bonding

mechanical design and integration

Goals of the R&D

Design a practical ECal which (1) meets (or exceeds) the stringent ILC physics requirements (2) with a technology that would actually work at the ILC.

- The physics case calls for a dense (small R_m), highly segmented "imaging calorimeter" with modest EM energy resolution
 - ⇒ W-Si pixel sampling calorimeter
- The key to making this practical is a <u>highly integrated electronic</u> readout:
 - readout channel count = pixel count /~1000
 - cost ≈ independent of cost for segmentation > 2-3 mm
 - 3.6 mm is current default
 - allows for a small readout gap (1 mm) \Rightarrow small effective R_m (13 mm)
 - low power budget (passive cooling)
 - handles the large dynamic range of energy depositions (few thousand)
- This takes some time to develop (getting close).

An "Imaging Calorimeter"

A highly segmented (in 3-D) ECal provides a general pattern recognition capability:

- PFA: particle separation in jets
- id of specific objects/decays: e.g. tau
- tracking (charged and neutrals)

Segmentation requirement

- In general, we wish to resolve individual photons from jets, tau decays, etc.
- The resolving power depends on Moliere radius and segmentation.
- We want segmentation significantly smaller than R_m

Two EM-shower separability in LEP data with the OPAL Si-W LumCal (David

Strom): **OPAL** Iwo-cluster resolution efficiency 0.8 0.4 10 15 20 25 30 35 Radial cluster separation (mm) d= 2.5mm , $R_{M}\sim$ 17mm

$$f_E \simeq \frac{R_{cal}}{\sqrt{R_M^2 + (4d_{pad})^2}}$$

Silicon detector layout and segmentation

Critical parameter for R_M is the gap between layers

Config. Radiation Molière length Radius 100% W 3.5mm 9mm 92.5% W 3.9mm 10mm +1mm gap 5.5mm 14mm +1mmCu 6.4mm 17mm Assumes 2.5mm thick tungsten absorber plates

readout gap cross section -- schematic

Conceptual Schematic – Not to scale

KPiX Cell 1 of 1024

64-channel prototypes:

- v1 delivered March 2006
- v4 currently under test

It's a complicated beast – will need a v5 before going to the full 1024-channel chip

Dynamic Range

KPiX-2 prototype on the test bench

Power

Current (ma)	Instantaneous Power (mw)	Time begin (us)	Time End (us)	Duty Factor	Average Power (mw)	Comments
370.00	930.00	0.00	1,020.00	5.10E-03	4.7	Power ok with current through FET's
85.00	210.00	1,021.00	1,220.00	9.95E-04	0.2	·
4.00	10.00	1,020.00	200,000.00	9.95E-01	9.9	
	3.00	0.00	200,000.00	1.00E+00	3.0	Receiver always on.
	10.00	1.00	100.00	4.95E-04	0.0	Sequencing is vague!
	100.00	1,021.00	1,220.00	9.95E-04	0.1	
	50.00	1,220.00	3,220.00	1.00E-02	0.5	
					18.5	Total power OK
	(ma) 370.00 85.00	(ma) Power (mw) 370.00 930.00 85.00 210.00 4.00 10.00 3.00 10.00 100.00	(ma) Power (mw) (us) 370.00 930.00 0.00 85.00 210.00 1,021.00 4.00 10.00 1,020.00 3.00 0.00 10.00 1.00 100.00 1,021.00	(ma) Power (mw) (us) (us) 370.00 930.00 0.00 1,020.00 85.00 210.00 1,021.00 1,220.00 4.00 10.00 1,020.00 200,000.00 3.00 0.00 200,000.00 10.00 1.00 100.00 100.00 1,021.00 1,220.00	(ma) Power (mw) (us) (us) Factor 370.00 930.00 0.00 1,020.00 5.10E-03 85.00 210.00 1,021.00 1,220.00 9.95E-04 4.00 10.00 1,020.00 200,000.00 9.95E-01 3.00 0.00 200,000.00 1.00E+00 10.00 1.00 100.00 4.95E-04 100.00 1,021.00 1,220.00 9.95E-04	Current (ma) Instantaneous Power (mw) Time begin (us) Time End (us) Duty Factor Power (mw) 370.00 930.00 0.00 1,020.00 5.10E-03 4.7 85.00 210.00 1,021.00 1,220.00 9.95E-04 0.2 4.00 10.00 1,020.00 200,000.00 9.95E-01 9.9 3.00 0.00 200,000.00 1.00E+00 3.0 10.00 1.00 100.00 4.95E-04 0.0 100.00 1,021.00 1,220.00 9.95E-04 0.1 50.00 1,220.00 3,220.00 1.00E-02 0.5

Passive conduction of 20 mW to module end (≈75 cm) via the tungsten radiator results in a few °C temperature increase ⇒ OK!

Noise in KPiX-4

- 1 MIP = 3.9 fC ⇒ meets ECal S/N spec of 8/1
- outliers probably due to routing issues

Noise is gaussian

Can set threshold at ≈ 0.5 MIP

prototype Si detector studies

Response of detectors to Cosmics
(Single 5mm pixel)
Simulate LC electronics
(noise somewhat better)

Errors do not include $\sim 10\%$ calibration uncertainty (no source calibration)

v2 Si detector – for full-depth test module

- 6 inch wafer
- 1024 13 mm² pixels
- improved trace
 layout near KPiX to
 reduce capacitance
- procurement in progress (it will take 6-12 months to complete the 40wafer purchase – funding limited)

Readout flex cable (digitized signals, power&control)

First prototype:

- 2 stations
- Buried signal layer between power and ground
- Wire bond connections
- No problem for prototypes

For ECal:

- ~6 stations: should be OK
- Would like to determine length limit for next round (vias and multilayers difficult for ~1m)

Status Summary and Plans (near term)

- KPiX readout chip
 - Currently studying v4 prototype (2x32 channels)
 - Submit v5 in next few weeks (4x32 channels)
 - Improved biasing of MOS capacitors; new poser bus for comparators
 - Optimized shaper time constants
 - Perhaps submit 1024-channel KPiX in Fall
- Silicon sensors
 - v2 prototype submitted to industry (40 sensors)
 - Schedule funding limited hope to acquire sensors Fall-Winter
- Readout flex cable short version for first module OK
- Bump bonding first trials (UC Davis) just starting
- → All of the above: a full-depth, single-wafer wide module
- → Test in a beam: (1) electrons; (2) hadrons with HCal

The R&D leading to an "ILC-ready" Si-W ECal technology is progressing well

Extra stuff...

R&D Milestones and test beams

- Connect (bump bond) prototype KPiX to prototype detector with associated readout cables, etc
 - Would benefit from test beam (SLAC?) 2007
 - A "technical" test
- II. Fabricate a full-depth ECal module with detectors and KPiX-1024 readout functionally ≈equivalent to the real detector
 - Determine EM response in test beam late 2007-8
 - Ideally a clean 1-30 GeV electron beam (SLAC?)
- III. Test with an HCal module in a hadron beam (FNAL?) 2008-?
 - Test/calibrate the hadron shower simulations; measure response
- IV. Pre-assembly tests of actual ECal modules in beam >2010-?

Longitudinal Sampling

resolution (%)

resolution (%)

Compare two tungsten configurations:

- 30 layers x 5/7 X₀
- $(20 \times 5/7 \times_0)$ + $(10 \times 10/7 \times_0)$

- Resolution is 17% / √E, nearly the same for low energy (photons in jets)
- Better for the 20+10 config.
 at the highest energies
 (leakage) ⇒ adopt as baseline

Electronics requirements

- Signals
 - <2000 e noise</p>
 - Require MIPs with S/N > 7
 - Large dynamic range: Max. signal is ≈2500 MIPs (for 5mm pixels)
- Capacitance
 - Pixels: 5.7 pF
 - Traces: ~0.8 pF per pixel crossing
 - Crosstalk: 0.8 pF/Gain x Cin < 1%
- Resistance (traces)
 - 300 ohm max
- Power
 - If < 40 mW/wafer ⇒ allows passive cooling (as long as power is cycled off between bunch trains)
- Provide fully digitized, zero suppressed outputs of charge and bx time on one ASIC for every wafer.

R Frey LCWS07

Use DC-coupled detectors: only two metal layers (cost)

Response of Detectors to 60KeV Gamma's from Am²⁴¹

Possible ~1% wafer-wafer calibration?

Noise is consistent with expectation from capacitance and series resistance