The PFA Approach to ILC Calorimetry

Steve Magill - ANL Calorimeter R&D Review LCWS DESY May 31, 2007

Multi-jet Events at the ILC PFA Approach PFA Goals PFA Requirements on ILC Calorimetr PFA-motivated Detector Models PFA Results

Energy Sums Dijet Mass Detector Optimization

Simulations and Test Beams

Summary

The PFA results shown in this talk are made possible and brought to you by :

Ron Cassell, SLAC Mat Charles, University of Iowa Norman Graf, SLAC Mark Thomson, Cambridge University Graham Wilson, Kansas Uiversity Lei Xia, ANL SM, ANL

Precision Physics at the ILC

e*e*: background-free but can be complex multijet events

Includes final states with heavy bosons W, Z, H

 But, statistics limited so must include hadronic decay modes (~80% BR)
 multi-jet events

In general no kinematic fits -> full event reconstruction

Parton Measurement via Jet Reconstruction

- Calorimeter jet
 - Interaction of hadrons with calorimeter.
 - Collection of calorimeter cell energies.

• Particle jet

- After hadronization and fragmentation.
- Effect of hadronization is soft ⇒ allows comparison between particle and parton jets.

• Parton jet

- Hard scattering.
- Additional showers.

From J. Kvita at CALOR06

Cal Jet -> large correction -> Particle Jet -> small correction -> Parton Jet

The Particle Flow Approach to Jet Reconstruction

PFA Aim : 1 to 1 correspondence between measured detector objects and particle 4-vectors -> Detector Jet == Particle Jet

- -> combines tracking and 3-D imaging calorimetry:
- good tracking for charged particles (~60% of jet E)
 -> σ_p (tracking) <<< σ_E for photons or hadrons in CAL
- good EM Calorimetry for photon measurement (~25% of jet E)
 -> σ_E for photons < σ_E for neutral hadrons
- good separation of neutral and charged showers in E/HCAL
 - -> CAL objects == particles
 - -> 1 particle : 1 object -> small CAL cells

adequate E resolution for neutrals in HCAL (~13% of jet E)
 -> σ_E < minimum mass difference, e.g. M_Z - M_W
 -> still largest contribution to jet E resolution

Jet Energy Resolution – "Perfect" PFA

PFA Goal – Particle-by-Particle W, Z ID

- Want $m_Z m_W = 3\sigma_m$ (dijets) -> dijet mass resolution of ~3.5 GeV or 3-4% of the mass
- Better resolution increases the *useable luminosity* - or decreases running cost

Dijet masses in WW and ZZ events

Dilution factor vs cut : integrated luminosity equivalent

C.BRIEN

110

102 GeV Higgs?!!

PFA Goal – Jet Energy Resolution Dependence

The PFA Approach and Detector Design

PFA key -> complete separation of charged and neutral hadron showers

-> hadron showers NOT well described analytically, *fluctuations dominate*

-> average approach -> E resolutions dominated by fluctuations

-> shower reconstruction algorithms -> sensitive to fluctuations on a shower-by-shower basis -> better E resolution - PFA approach

Requires a calorimeter designed for optimal 3-D hadron (and photon) shower reconstruction :

-> granularity << shower transverse size (number of "hits")

-> segmentation << shower longitudinal size ("hits")

-> digital or analog readout?

-> dependence on inner R, B-field, etc.

uses optimized PFA to test detector model variations

ECAL Requirements for Particle-Flow

-> Need a dense calorimeter with optimal separation between the starting depth of EM and Hadronic showers. If λ_I / X_0 is large, then the *longitudinal separation* between starting points of EM and Hadronic showers is large

-> For electromagnetic showers in a dense calorimeter, the transverse size is small

-> small effective r_M (Moliere radius) -> dense absorber + thin readout gap

-> If the transverse segmentation is of size r_M or smaller, get optimal *transverse separation* of electromagnetic clusters. Dense, Non-magnetic Less Dense, Non-magnetic

Material	λ _l (cm)	X ₀ (cm)	$\lambda_{\rm I}/X_0$
W	9.59	0.35	27.40
Au	9.74	0.34	28.65
Pt	8.84	0.305	28.98
Pb	17.09	0.56	30.52
U	10.50	0.32	32.81

Material	λ _I (cm)	X ₀ (cm)	$\lambda_{\rm I}/X_0$
Fe (SS)	16.76	1.76	9.52
Cu	15.06	1.43	10.53

... use these for ECAL

HCAL Requirements for Particle-Flow

S	5	Single 5 GeV π			W	Single 5 GeV π			GeV π
cone	mean (GeV)	rms	σ /mean	χ2	cone	mean (GeV)	rms	σ /mean	χ2
.025	2.07	1.62	.79	10.61	.025	1.92	1.44	.78	9.36
.05	2.96	1.66	.51	4.51	.05	2.94	1.39	.41	4.29
.075	3.63	1.56	.38	2.74	.075	3.59	1.28	.31	2.42
.10	4.08	1,48	.31	2.56	.10	4.01	1.23	.25	2.35
.25	4.76	1.44	.25	2.49	.25	4.64	1.30	.23	2.70
.50	4.85	1.43	.25	2.42	.50	4.77	1.29	.23	2.50
.75	4.86	1.42	.25	2.25	.75	4.79	1.28	.23	2.41
1.00	4.87	1.42	.25	2.45	1.00	4.80	1.28	.23	2.40

Energy in fixed cone size : -> means ~same for SS/W -> rms ~10% smaller in W

Tighter showers in W

... dense HCAL as well?-> 3-D separation of showers

Digital HCAL?

GEANT 4 Simulation of SiD Detector (5 GeV π^+) -> sum of ECAL and HCAL analog signals - Analog -> number of hits with 1/3 mip threshold in HCAL - Digital

Analog

Digital

Occupancy Event Display

PFA Results at Z Pole in SiD

SID SS/RPC HCAL

Average total confusion contribution = 1.9 GeV (central peak) <~ Neutral hadron resolution contribution of 2.2 GeV (Perfect PFA)

PFA Results on qqbar

LDC SS/Scin HCAL

E	$\sigma_{\rm E}/{\rm E} = \alpha \sqrt{{\rm (E/GeV)}}$
L⊃EL	cosθ <0.7
45 GeV	0.295
100 GeV	0.305
180 GeV	0.418
250 GeV	0.534
	rms90

PFA Results - Angular Dependence LDC SS/Scin HCAL

Fairly flat until beam pipe affects result
 Evidence for shower leakage at cosθ = 0?

- Shower leakage affects PFA performance at high energy
- Use hits in the muon detectors to estimate shower leakage?

SID SS/RPC HCAL

μ₉₀: -3.08162802

RMS₉₀: 5.41753643

Dijet mass residual (GeV/c²)

W,Z Separation in Physics Events with PFA

LDC SS/Scin HCAL

Detector Optimization Studies with PFAs

Ultimately : Optimise performance vs. cost

- **★** Main questions (the major cost drivers):
 - Size : performance vs. radius (IP to ECAL)
 - Granularity (longitudinal/transverse): ECAL and HCAL
 - B-field : performance vs. B
- **★** To answer them use MC simulation + PFA algorithm
 - Need a good MC simulation
 - Need realistic PFA algorithm
 - (want/need results from multiple algorithms)
 - Developed PFA Template -> interchange of PFA code

Caveat Emptor

- These studies are interesting but not clear how seriously they should be taken
 - how much is due to the detector
 - how much due to imperfect algorithm

HCAL Depth and Transverse segmentation

- Investigated HCAL Depth (interaction lengths)
 - Generated $Z \rightarrow uds$ events with a large HCAL (63 layers)

approx 7 λ_l

- In PandoraPFA introduced a configuration variable to truncate the HCAL to arbitrary depth
- Takes account of hexadecagonal geometry

NOTE: no attempt to account for leakage - i.e. using muon hits - this is a worse case

★ Analogue scintillator tile HCAL : change tile size 1x1 → 10x10 mm²

"Preliminary Conclusions"

- 3x3 cm² cell size
- •
- No advantage \rightarrow 1x1 cm²
 - physics ?
 - algorithm artefact ?
- 5x5 cm² degrades PFA
 - Does not exclude coarser granularity deep in HCAL

LDC SS/Scin HCAL

PFA Results : CAL Radius and Detector B-field

Simulations and Test Beams

PFA + Full Simulations -> LC detector design

- new and unique approach to calorimeter design
- requires reconstruction of single particles, BUT in the context of jets
 - -> particle fragmentation in cal layers (Hadron Shower Models)
 - -> fluctuations in parton hadronization (QCD)
- relies on correct! simulation of individual hadron showers AND
- proximity with other simulated particles in a QCD jet

Test Beam Contributions to Simulation : 1) Shower Model Comparisons – formation of G4 Physics List "thick" target data – CAL prototypes

2) Shower Model Tuning "thin" target data – particle production diff cross sections vs E, angle, etc. – dedicated experiment – *MIPP (Fermilab)*

Correct simulation of hadron showers ultimately requires 2)

Hadron Shower Models -Cal Prototypes in Test Beams

LCPhys vs LHEP in G4 LCPhys – Bertini Cascade Model LHEP – Phenom Models, LEP

	LCPhys	LHEP			
π+/-	Bertini Cascade 0-9.9 GeV LEP 9.5-25 GeV QGSP 12 GeV – 100 TeV	G4LEPion+/-Inelastic 0-55 GeV G4HEPion+/-Inelastic 25-100 TeV			
р	Bertini Cascade 0-9.9 GeV LEP 9.5-25 GeV QGSP 12 GeV – 100 TeV	G4LEProtonInelastic 0-55 GeV G4HEProtonInelastic 25-100 TeV			
p bar	LEP 0-25 GeV QGSP 20 GeV – 10 TeV	LEP 0-25 GeV HEP 20 GeV – 100 TeV			
KL0	Bertini Cascade 0-13 GeV QGSP 12 GeV – 100 TeV	G4LEKaonZeroLInelastic 0-25 GeV G4HEKaonZeroInelastic 20-10 TeV			
n	Bertini Cascade 0-9.9 GeV LEP 9.5-25 GeV QGSP 12 GeV – 100 TeV	G4LENeutronInelastic 0-55 GeV G4HENeutronInelastic 25-100 TeV			
Nbar	LEP 0-25 GeV QGSP 12 GeV – 10 TeV	LEP 0-25 GeV HEP 20 GeV – 100 TeV			

Hadron Shower Model Tuning – MIPP Upgrade

MIPP

Main Injector Particle Production Experiment (FNAL-E907)

The A-List

• H2,D2,Li,Be,B,C,N2,O2,Mg,AI,Si,P,S,Ar,K,Ca,Fe, Ni,Cu,Zn,Nb,Ag,Sn,W,Pt,Au,Hg,Pb,Bi,U

The B-List

Na, Ti, V, Cr, Mn, Mo, I, Cd, Cs, Ba

With this data, for beam energies ranging from 1 GeV/c-120 GeV/c for 6 beam species, one can change the quality of hadronic shower simulations enormously— Net conclusion of HSSW06.

5 M events/day

For upgrade we will add the plastic ball detector (GSI, Darmstadt) as a recoil detector. This will help with the tagged neutrons

RICH/

Neutron Calorimeter

MIPP Experiment and Upgrade -Status

- MIPP E907 took data in 2005 is busy analyzing 18 million events—Results expected soon.
- MIPP Upgrade proposal P-960
 - was deferred in October 2006 till MIPP publishes existing data
 - Obtains new collaborators-(10 additional institutions have joined)
- MIPP Upgrade will speed up DAQ by a factor of 100 and will obtain data on 30 nuclei. This will benefit hadronic shower simulator programs enormously—See Dennis Wright's talk at the ILC test beam workshop.
- MIPP Upgrade will provide tagged neutral beams for ILC calorimeter usage.

Tagged neutron and K-long beams in MIPP

 $pp \rightarrow pn\pi^+$

The MIPP Spectrometer includes high statistics neutron and K-long beams generated on the LH2 target that can be tagged by constrained fitting

- -> neutron and K-long momenta can known to better than 2%
- -> energy of the neutron (K-long) can be varied by changing the incoming proton(K⁺) momentum in the following reactions :

$T_{2} + T_{2} 0 + 0$	Empered dagged neutral faces, day of failing					
$K^+ p \rightarrow p K_L^* \pi^+$	Beam Momentum	Proton Beam	K+ Beam	K- Beam	Antiproton Beam	
	(GeV/c)	(# p/day)	(# K _L /day)	(# K _L /day)	(# anti-n/day)	
$K^- p \rightarrow p K_L^{\circ} \pi^-$	10	20532	4400	4425	6650	
	20	52581	9000	9400	11450	
$pp \rightarrow n\pi p$	30	66511	12375	14175	13500	
	60	47069	15750	14125	13550	

See R.Raja-MIPP Note 130.

Expected tagged neutral rates/day of running

An expression of support from the ILC community will help speed up the approval process.

Summary

Jet reconstruction will be crucial to our understanding of physics at the ILC.

To live up to its potential as a precision instrument for the physics of the future, an ILC detector must include hadronic decays of massive particles in physics analyses as well as leptonic modes -> The PFA approach to jet reconstruction is seen as a way to use the components of an ILC detector in an optimal way, achieving unprecedented mass resolution from dijet reconstruction.

PFA development is an R&D project itself, and much progress has been made in efforts parallel to the those in detector hardware.

PFAs are beginning to show that they do, indeed, result in much improved jet reconstruction for simulated events and jets that are expected at the ILC.

Dependencies on various detector parameters are now being studied, which will ultimately influence our choice of technologies for ILC detector component design - in particular the calorimeters.

Backup Slides

PFAs for LC Detectors?

Much "cleaner" environment for jets in e+e- collisions than in ppbar - at the LHC, jet E resolution is dominated by contributions from underlying events and final state gluon radiation

Without large UE and FSR contributions, CAL resolution dominates -> An obvious goal - W/Z ID with dijet mass measurement? Current calorimeters - $\sigma_M \sim 9$ GeV at Z-Pole

PFA potential improvement - $\sigma_M \sim 3 \text{ GeV}$

-> in addition to leptonic decay modes, can use >80% of hadronic decays as well

PFA vs Compensation?

Hardware compensation – for high energy particles (ZEUS 35%/ \sqrt{E} for $\pi > \sim 3$ GeV) but for jets resolution degrades.

Software compensation - requires knowledge of the particle type and/or particle energy, + reliance on shower and/or jet models

Particle Flow works as long as $\sigma_{\text{"mistakes"}} < \sigma_{\text{E}}$ of neutral hadrons (10%)

Dijet event in CDF Detector

ppbar -> qqbar -> hadrons + photons -> large calorimeter cells traditional jet measurement

One jet in Z -> qqbar event in a LC Detector

Z -> qqbar -> hadrons + photons = small 3D cal cells PFA jet measurement