Low Energy Positron Polarimetry for the ILC

Ralph Dollan, HU Berlin

Low Energy Polarimeter - Purpose, Environment

Available Processes -> Polarimeter Options

Bhabha Polarimeter (Compton Transmission Polarimeter)

Summary

The International Linear Collider (ILC)

- Center of mass energy: 500 GeV
- Luminosity: L= $2 \cdot 10^{34}$ cm⁻²s⁻¹
- Length:
- ~ 31 km
- Polarized beams: P(e⁻) > 80%, P(e⁺) ~ 30%(60%⁺) ⁺upgrade
- Polarization of both beams is advantageous f. SM- and non-SM-physics (eff. luminosity, signal/background in SM processes ...)

http://www.ippp.dur.ac.uk/~gudrid/source/

- Measurement of positron polarization at the source
 - -> Optimization of the positron beam polarization/intensity
 - -> Control of polarization transport
- Beam Parameters

2·10 ¹⁰
2820
5 Hz
30 - 5000 MeV
10 %
~ 3.6 cm rad
~ 1 cm

The challenges

Polarization measurement -> measure Asymmetries !

Find for the low energy range a process with

- sensitivity to longitudinal polarization of positrons (electrons)
- good signal/background ratio
- significant asymmetry
- accuracy at percent level

Desired:

- non-destructive
- good reliability
- easy to handle
- fast (short measuring time)

Available Processes

- Laser Compton Scattering (ex.: SLC, HERA)
 - High intensity Laser on low emittance beam
 - Only after Damping Rings (Intensity, Energy)
 - High precision
- Bhabha/Møller (ex: SLAC, JLAB, VEPP-3)
 - Thin magnetized Target
 - Suitable for desired energy range
- Compton Transmission (ex.: E166, KEK-ATF Pol. Experiment)
 - Beam absorbed in thick target
 - Very low energy (< 100 MeV)
- Mott
 - Transverse polarized positrons, high background
- Synchrotron radiation (ex.: VEPP-4 storage ring)
 - Transverse polarization
 - Near/in damping ring?
 - Low signal Asymmetry < 10⁻³

Compton Transmission Method

- Destructive !
- Polarized positrons reconverted into polarized gammas
- Polarization dependent transmission due to Compton scattering in magnetized Iron

Bhabha Polarimetry

- As Møller Polarimeter already used (SLAC, VEPP-3)
- Non-destructive !
- Working point:
 - After pre-acceleration
 - First design studies done for

125 MeV - 400 MeV 200 MeV / 400 MeV

Cross section:

$$\frac{d\sigma}{d\Omega} = r_0^2 \frac{(1+\cos\theta)^2}{16\gamma^2 \sin^4\theta} \left\{ \left(9+6\cos^2\theta+\cos^4\theta\right) - \frac{P_{e^+}P_{e^-}}{P_{e^+}P_{e^-}} \left(7-6\cos^2\theta-\cos^4\theta\right) \right\}$$

• Example: P_{e+} = 80%, P_{e-} = 7% $A_{max} \sim 4.4$

Bhabha Polarimeter

• Measures Asymmetry of scattered particles (e^+ , e^- ,(γ)) of two magnetization states of the target

Bhabha Polarimeter: Target

- Magnetized thin IronTarget
- Heating of the target -> Magnetization decreases \ge
 - Simulation for 30 μ m
 - Cooling by radiation
 - T_c (Fe) = 1039 K; melting point 1808 K

- Ongoing considerations on target layout
 - ΔT -> ΔM -> ΔP -> ΔA
 - Magnetic field (tilted or not)
 - Cooling in real
 - Monitoring of magnetization

Towards a Geometry for a LEPOL

Questions to answer:

- detector area with best significance? •
- detector type ?
- mask dimensions, material?
- magnet dimensions ?

• • ×

(beam: 1*10⁹ e⁺, E: 400 MeV (10 % spread), ang spread: 0.5°

Summary

- Present ongoing work:
 - Detailed design studies for Bhabha polarimeter:
 - Layout
 - Target
 - Implementation into beam line
 - Compton transmission performance studies
 - Simulation studies of Laser Compton Method (Minsk, TelAviv)

The LEPOL Collaboration: Karim Laihem, Sabine Riemann, Andreas Schälicke, Peter Schüler, Andriy Ushakov, DESY R.D., Thomas Lohse, HU Berlin Pavel Starovoitov, Minsk Gideon Alexander, TelAviv