THE STATUS OF POSITRON SOURSE DEVELOPMENT AT CORNELL-II

Alexander Mikhailichenko
Cornell University, LEPP, Ithaca, NY 14853

LCWS2007, May 30-June 4, 2007 Hamburg, DESY

ACTIVITIES

\checkmark CODE FOR POSITRON CONVERSION (UNDULATOR \rightarrow LINAC \rightarrow further on)
Choice of undulator parameters \rightarrow main issuee Choice of target dimensions
Choice of collection optics parameters
\checkmark UNDULATOR DESIGN (main activity)
Undulators with period 10 and 12 mm having 8 mm aperture (tested) Designed undulators with aperture $1 / 4$ " (7 mm magnetic core)
TARGET DESIGN (in addition to Livermore, SLAC, Daresbury
Rotating Tungsten target (includinc new sandwich type)
Liquid metal target: $\mathrm{Bi}-\mathrm{Pb}$ or Hg
These
COLLECTION OPTICS DESIGN
Lithium lens
Solenoid

Collimator for gammas
Collimators for full power beam
PERTURBATION OF EMITTANCE ANQ POLARIZATION
Perturbation of emittance in regular part
Polarization handling
\checkmark UNDULATOR CHICANE
Minimal possible parallel shift

\checkmark COMBINING SCHEME

Two-target scheme

CODE FOR POSITRON CONVERSION

Undulator \rightarrow target \rightarrow focusing \rightarrow post acceleration
 Written in 1986-1987; restored in 2007

Interactive code; Solenoidal lens will be added soon

Particles described by 2D array (matrix). One parameter numerates particles, the other one numerates properties associated with each particle: energy, polarization, angles to axes

Code has ~ 1400 rows;
Will be added solenoidal lens;
Will be added more graphics;
Possibility for the file exchange with graphical and statistical Codes (JMP);

Possibility for the file exchange with PARMELA;

Few seconds for any new variant

CONUERSION FOCUSING ACGELERATION $-\frac{1}{\text { A }}$
WHAT TO DO?
$\mathrm{DO}=.300 \mathrm{AL}=.400 \mathrm{DWO}=.100 \mathrm{GG}=\quad .070$
*** PARAMETERS OF AGGELERATION $* * *$
DISTANCE TO RF STRUCTURE $\mathrm{cm}=2.0000$ RADIUS OF DIAPHRAGM $\mathrm{cm}=3.0000$ LENGTH OF RF STRUCTURE $\mathrm{cm}=100$. CB OU LENGTH OF RF STRUCTURE cm $=100.0000$ GRADIENT MeU/CD $\begin{aligned} \text { INNER RADIUS OF DIPHRAGM } \mathrm{cm} & =3.0400 \\ \text { FURTHER ACEPTANCE MeUxcm } & =10.00 G D\end{aligned}$ FURTHER ACEPTANCE MeUxcm $=10.0000:=$
POSITRONS PASSED $=4051$ POSITRONS ACGETTED $=4011$
MH $==$

PUE
ALO

$\begin{array}{rlllllll}\text { RMS }= & .915 & \text { AMS }= & .040 & \text { DEM }=136.344 & \text { EM }= & 58.225 & \text { D7 }=18000.0 G \\ \text { PTM }= & 2.383 & \text { PZM }= & 58.176 & \text { DPZ } & = & 5.001 & \text { PRM }= \\ -.017 & \text { PUG } & =19.071\end{array}$

EFF〈EX, CT >

. 0065	. 0141	. 0286	. 0379	. 0354	. 1444	
. 0602	. 1703	. 1959	. 1583	. 1233	. 1462	
. 0715	. 1733	. 1486	. 1049	. 0557	. 0126	
. 0248	. 0843	. 0700	. 0255	.0106	.0007	
.0158	. 0315	. 0211	. 0106	.0032	.0006	
EFP〈EX, CT >						
. 0372	-. 0222	. 0644	. 0730	-.0607	. 0555	
. 4200	. 4642	. 4093	. 4150	. 3323	. 2957	
. 7056	. 6618	. 6318	. 6424	. 6403	. 5375	
. 5951	. 6645	. 6523	. 5436	. 5939	. 3507	
. 6141	. 6423	.6217	. 6786	. 6096	. 7789	Efficiency and
$\mathrm{EFF}=1.610 \quad \mathrm{EFP}=47.420 \%$ polarization						

Monte-Carlo simulation of positron conversion example

For parameters above : Efficiency $=1.54$ Polarization $=50 \%$
So K-factor can be small, $K<0.4$, what brings a lot of relief to all elements of system

Modeling of E-166 experiment

Phase space right after the target
$\square-x$

Polarized $\mathrm{e}^{ \pm}$production

The way to create
circularly polarized
positron, left. Cross-
diagram is not shown. At
the right-the graph of
polarization-as a function
of particle's fractional
energy

The way to create circularly polarized photon

Polarized electron

E.Bessonov 1992

Polarization of positrons is a result of positron selection by energy

$$
\vec{\zeta}=\xi_{2} \cdot\left[f\left(E_{+}, E_{-}\right) \cdot \vec{n}_{\|}+g\left(E_{+}, E_{-}\right) \cdot \vec{n}_{\perp}\right]=\vec{\zeta}_{\|}+\vec{\zeta}_{\perp}
$$

Polarization effects implemented in KONN

POLARIZATION CURVE APPROXIMATION

!

```
EP4EEP-0.4
EP6=EP-0.6
PP=0.305+2.15*EP4
IF(EP.LT.0.4)PP=PP-0.05*EP4-2.5*EP4**3
IF(FPGT,0.6)PP=PP-0.55*EP6-2.65*EP6**2+0.7*EP6**3 !PP=PP-0.55*EP6-2.6*EP6**2
IF(PP.GT.1.)PP=1. Sentinel
```

Depolarization occurs due to spin flip in act of radiation of quanta having energy $0<\hbar \omega_{\gamma} \leq E_{1}$ where E_{1} stands for initial energy of positron. Depolarization after one single act

$$
D=1-\left|\frac{d \sigma_{\gamma e}\left(\zeta_{1}, \zeta_{1}\right)-d \sigma_{\gamma}\left(\zeta_{1},-\zeta_{1}\right)}{d \sigma_{\gamma}}\right|
$$

Where $d \sigma_{\varkappa}\left(\zeta_{1}, \zeta_{1}\right)$ stands for bremstrahlung cross section without spin flip, $d \sigma_{\chi}\left(\zeta_{1},-\zeta_{1}\right)$ -the cross section with spin flip and $d \sigma_{\mu} \quad$ is total cross section.

$$
\begin{aligned}
& D=\frac{\hbar^{2} \omega_{\gamma}^{2} \cdot\left[1-\frac{1}{3} \zeta_{1 \|}^{2}\right]}{E_{1}^{2}+E_{2}^{2}-\frac{2}{3} E\left[E_{2}\right]} \begin{array}{l}
\text { Energy after } \\
\text { radiation }
\end{array} \\
& L_{\text {dep }} \cong \frac{1}{n \int D\left(\vec{p}_{1}, \zeta_{1}\right) d \sigma} \longrightarrow L_{\text {dep }} \cong \frac{2 X_{0}}{1-\frac{1}{3} \zeta_{\|}^{2}} \cong 3 X_{0} \quad \text { Rad. length }
\end{aligned}
$$

Multiple scattering in a target

Kinematical perturbations due to multiple scattering in a target

Let us consider the possible effect of kinematical depolarization associated with rotation of spin vector while particle experience multiple scattering in media of target before leaving Typically polarized positron carries out $\sim(0.5-1) \hbar \omega$-energy of gamma quanta. As positrons/electrons created have longitudinal polarization, it is good to have assurance that during scattering in material of target polarization is not lost. Each act of scattering is Coulomb scattering in field of nuclei. So BMT equation describing the spin ζ motion in electrical field of nuclei looks like

$$
\begin{equation*}
\frac{d \vec{\zeta}}{d t}=\frac{e}{m c^{2} \gamma}\left\{G \gamma+\frac{\gamma}{\gamma+1}\right\} \cdot \vec{\zeta} \times(\vec{E} \times \vec{v}), \tag{A16}
\end{equation*}
$$

where $\vec{E} \sim \mathrm{Ze} \vec{r} / r^{3}$ stands for repulsive (for positrons) electrical field of nuclei, factor $G=\frac{g-2}{2} \cong 1.1596 \times 10^{-3} \approx \frac{\alpha}{2 \pi}$. Deviation of momentum is simply $d \vec{p} / d t=e \vec{E}$.

So the spin equation becomes

$$
\begin{equation*}
\frac{d \vec{\zeta}}{d t}=\frac{1}{m c^{2} \gamma}\left\{G \gamma+\frac{\gamma}{\gamma+1}\right\} \cdot \vec{\zeta} \times\left(\frac{d \vec{p}}{d t} \times \vec{v}\right) . \tag{A17}
\end{equation*}
$$

We neglected variation of energy of particle during the act of scattering, so $\frac{d \bar{p}}{d t} \cong m \gamma \frac{d \bar{\gamma}}{d t}$ and vector \vec{p} just changes its direction. Introducing normalized velocity as usual $\overrightarrow{\boldsymbol{\beta}}=\overrightarrow{\boldsymbol{v}} / c$, equation of spin motion finally comes to the following

$$
\begin{equation*}
\frac{d \vec{\zeta}}{d t}=\left\{G \gamma+\frac{\gamma}{\gamma+1}\right\} \cdot \vec{\zeta} \times(\dot{\vec{\beta}} \times \overrightarrow{\boldsymbol{\beta}})=\left\{G \gamma+\frac{\gamma}{\gamma+1}\right\} \cdot \vec{\zeta} \times \frac{d \overrightarrow{\boldsymbol{\varphi}}}{d t} \tag{A18}
\end{equation*}
$$

where $\boldsymbol{\varphi}$ stands for the scattering angle and the vector $d \overrightarrow{\boldsymbol{\varphi}} / d t$ directed normally to the scattering plane. For intermediate energy of our interest $\gamma \sim 40$, so the term in bracket ~ 1 and, finally

$$
\begin{equation*}
\frac{d \vec{\zeta}}{d t} \cong \vec{\zeta} \times \frac{d \overrightarrow{\boldsymbol{\varphi}}}{d t} \tag{A19}
\end{equation*}
$$

The last equation means that spin rotates to the same angle as the scattering one, i.e. spin follows the particle trajectory

Spin flip in undulator

Positron or electron may flip its spin direction while radiating in magnetic field. Probability:

$$
\frac{1}{\tau}\left[\sec ^{-1}\right]=w_{f l i p}=\frac{5 \sqrt{3}}{16} \frac{r_{0}^{2}}{\alpha} \frac{\omega_{0}^{3}}{c^{2}} \gamma^{5}\left(1-\frac{2}{9} \zeta_{\|}^{2}-\frac{8 \sqrt{3}}{15} \frac{e}{|e|} \zeta_{\perp}\right)
$$

Probability of radiation:

The ratio

$$
w_{r a d} \cong \frac{I}{\hbar \omega_{0} 2 \gamma^{2}}=\frac{2}{3} \frac{e^{4} H^{2} \gamma^{2}}{m^{2} c^{3}} \frac{1}{\hbar \omega_{0} 2 \gamma^{2}}=\frac{1}{3} \alpha \gamma^{2} \omega_{0}
$$

$$
\frac{w_{\text {flip }}}{w_{\text {rad }}}=\frac{15 \sqrt{6} \frac{\lambda_{c}^{2}}{16} \lambda_{u}^{2} \gamma^{2}\left(1-\frac{2}{9} \zeta_{\|}^{2}-\frac{8 \sqrt{3}}{15} \frac{e}{\lambda_{c}=r_{0} / \alpha=e^{2} / \mathrm{mc}^{2} / c} \zeta_{\perp}\right) .}{}
$$

Effect of spin flip still small (i.e. radiation is dominating).

Depolarization at IP

- Depolarization arises as the spin changes its direction in coherent magnetic field of incoming beam. Again, here the deviation does not depend on energy, however it depends on location of particle in the bunch: central particles are not perturbed at all. Absolute value of angular rotation has opposite sign for particles symmetrically located around collision axes.
- This topic was investigated immediately after the scheme for polarized positron production was invented. This effect is not associated with polarized positron production exclusively because this effect tolerates to the polarization of electrons at IP as well. Later many authors also considered this topic in detail. General conclusion here is that depolarization remains at the level $\sim 5 \%$
E.A. Kushnirenko, A. A. Likhoded, M.V. Shevlyagin, "Depolarization Effects for Collisions of Polarized beams", IHEP 93-131, SW 9430, Protvino 1993.

Kinematic depolarization in undulator

Process can be considered in a system of reference rotating with frequency

$$
\begin{gathered}
\frac{d \vec{\zeta}}{d t}=\vec{\zeta} \times\left(\vec{\Omega}_{s}-\vec{\Omega}\right) \equiv \vec{\zeta} \times \vec{\Omega}_{\text {eff }} \quad \text { where } \\
\vec{\Omega}_{e f f}=\vec{\Omega}_{\perp}+\vec{\Omega}_{\mid}=\left\{[1+\gamma G] \cdot \frac{e H_{\perp} \lambda_{u}}{m c \cdot \gamma} \cdot \frac{c}{\lambda_{u}} ; 0 ; \frac{c}{\lambda_{u}}\right\} \equiv\left\{[1+\gamma G] \frac{K}{\gamma} \cdot \frac{c}{\lambda_{u}} \vec{e}_{\perp} ; 0 ; \frac{c}{\lambda_{u}} \vec{e}\right\}
\end{gathered}
$$

$G=(g-2) / 2$ can be represented as $\quad G=1 / \gamma_{0} \quad$ where γ_{0} corresponds to 440.65 MeV
so $\vec{\Omega}=\vec{\Omega}+\vec{\Omega}=\left[1+\frac{\gamma}{\gamma} \cdot \frac{e H_{\perp} \lambda_{u}}{\omega^{\gamma}} \cdot \frac{c}{\lambda_{u}} \cdot 0 \cdot \frac{c}{\lambda_{u}}\right\} \simeq \frac{K}{\gamma} \cdot \frac{c}{\lambda_{u}} \cdot \frac{c}{\lambda_{\vec{e}}}$ Does not depend on Energy \rightarrow
so $\left.\vec{\Omega}_{\text {eff }}=\vec{\Omega}_{\perp}+\vec{\Omega}=\left\{1+\frac{\gamma}{\gamma_{0}}\right] \cdot \frac{e H_{\perp} \lambda_{u}}{m c \cdot \gamma} \cdot \frac{c}{\lambda_{u}} ; 0 ; \frac{c}{\lambda_{u}}\right\} \cong\left\{\frac{K}{\gamma_{0}} \cdot \frac{c}{\lambda_{u}} \vec{e}_{1} ; \gamma ; \frac{c}{\lambda_{u}} \vec{e}\right\}$ depolarization $\approx\left(K / \gamma_{0}\right)^{2}$
During passage through undulator spin rotates around $y^{\prime} \varphi=\Omega_{\perp} t=\frac{K}{\gamma_{0}} \cdot \frac{c}{\lambda_{u}} \cdot \frac{L}{c}=\frac{K L}{\gamma_{0} \lambda_{u}} \cong 50 \mathrm{rad}$
This needs to be taken into account while preparing polarization at IP

CONCLUSIONS

Restored start to end code for Monte-Carlo simulation of conversion; Confirmed low K factor possible here; $\mathrm{K}<0.4$ with period 10 mm
Calculations with KONN show that these parameters satisfy ILC

Perturbation of spin is within 10% total (from creation).
This number could be reduced by increasing the length of undulator, making target thinner (two targets) and beams more flat at IP.

UNDULATOR DESIGN

Complete design done;
System for magnetic measurement designed;

