

THE STATUS OF POSITRON SOURSE DEVELOPMENT AT CORNELL-II

Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853

LCWS2007, May 30-June 4, 2007 Hamburg, DESY

ACTIVITIES

CODE FOR POSITRON CONVERSION

Undulator \rightarrow target \rightarrow focusing \rightarrow post acceleration Written in 1986-1987; restored in 2007

Beam dimensions: Phase-space distributions;

Energy spread within phase space;

Beam lengthening;

Material of flanges; Gradient: Step of calculations:

Interactive code; Solenoidal lens will be added soon

C:\MSDEV\Projects\POSITRON_CONVERSION\Debug\POSITRON_CONVERSION.exe"

Particles described by 2D array (matrix). One parameter numerates particles, the other one numerates properties associated with each particle: energy, polarization, angles to axes

Code has ~1400 rows;

Will be added solenoidal lens;

Will be added more graphics;

Possibility for the file exchange with graphical and statistical Codes (JMP);

Possibility for the file exchange with PARMELA;

Few seconds for any new variant

C:\IVISDEV\Projec		INVERSION DEBU	g(POSITKON CON	WERSION.exe		
CONUERSIC FOCUSING ACCELERAT	ON – C – F CION – A					
WHAT TO I	- 90?					
D0 = .300	AL = .4	400 DWO =	.100 GC	G = .070		
*** PARAMETERS	OF ACCELER	ATION ***				
ISTANCE TO RF ADIUS OF DIAPH ENGTH OF RF ST RADIENT M DNGITUDINAL FI	STRUCTURE cr IRAGM cr RUCTURE cm leU/cm ELD MGs	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Pe	eriod		
IRTHER ACEPTAN	OIPHRHGMCr ICE Mevxcm	n = 3.0000 = 10.0000	:=	K-fac	tor	
DSITRONS PASSE WW = 2.065 PØ553	ED= 4051 POSI WWP = BET∩3	ITRONS ACCER 958 981 DE-DT -	TED = 4011 $4^{-1.19}$ I	EFF - 2.0	65	
PVØ	ALO A	ALMB K	EPS	BT	RTG	GG
150000.0 1	.7500.0 1	.00 .350	.000001	40000.0	.50	.070
RMS = .915 PTM = 2.383 TM = 100.685 RF = 3.00	AMS = PZM = 58 DTM = AL/Xo= .46	.040 DEM = .176 DPZ = .620 WW = 0 H0 =	136.344 EM 5.001 PRM 2.065 WI .040 EPSM	1 = 58.225 1 =017 2 = .464 7 = 10.00 Me	D7 =1 PVG = NØ = Vxcm	8000.00 19.071 2400
	EFFCEX	.CT>				
.0065 .0141	. 0286	.0379 .035	4 .1444			
.0602 .1703	.1959	.1583 .123	3.1462			
.0715 .1733	.1486	.1049 .055	.0126			
.0248 .0843	.0700	.0255 .010	6.0007			
.0158 .0315	.0211	.0106 .003	2.0006			
	EFP <ex,< td=""><td>.CT></td><td></td><td></td><td></td><td></td></ex,<>	.CT>				
.03720222	.0644	.0730060	.0555			
.4200 .4642	.4093	.4150 .332	3.2957			
.7050 .6618 5951 .6640	6522	.0424 .640 5436 593	0 35075			
-6141 -6423	.6217	.6786 .609	6 .7789			
	10411			Efficie	ncy a	and
EFF =	= 1.610 El	FP= 47.420	×	polariz	zatio	n

Parameters optimized with KONN

Monte-Carlo simulation of positron conversion example

So K-factor can be small, K<0.4, what brings a lot of relief to all elements of system

Modeling of E-166 experiment

Phase space right after the target

CIN "C:\MSDE	V\Projects\P(OSITRON	CONVERSIO	N\Debug\F	OSITRON CO	NVERSION.exe		
WHA	T TO DO?							
*** \$¥\$	TEM PARAM	IET ERS	xxx					
INITIAL M	OMENTA ,M	1eV	=150000	.0 :=49	000			
LENGTH OF	UNDULATO	R, cm	= 17500	.0 :=10	Ø			
K FACTOR			= .3	50 :=.1	7			
PERIOD OF	ONDULATO)R, cm	- 1.0	00 :=.2	54			
DISTANCE	TO THE TA	RGET	= 18000	.0 :=32	00			
RADIUS O	F TARGET	, cm	= .5	00 :=.1	5			
RADIUS O Emittance Betta-fun	F HOLE , cmxrad CTION,	CM	= .0 = 1.000 = 40000	00 := E-06:= .0 :=40	00			
LENGTH OF	TARGET/X	lo	= .4	00 :=.5				
STEP OF C HARMONICS NUMB.OF P	ALCULATIO INDEX ART ON 1)N 0;<5 H	= .1 = 0 =2400	00 := := :=				
TOTAL NUI MAX ENER GAMMA	MBER OF F GY OF QUA	PHOTONS INTA	= 1. = 8.7 = 958	014 41 MeV 90.4				
ENERGY OF LENGTH OF BT = 400 XU = .07 Photons/e	QUANTA = UNDUL. = 0.0 RTG = 2 NUME = 1.0	= 8.7 = 100 = .15 BER OF 1 D14 GA	41 BET .Ø PERIO F PARTICLE MMA= 9	A = 1. D = .2 Ø =09 S BY FIF 5890.4	274 EFF = 5 pt2 = 1 rms = St harmon	= .003 F = .03 E = 1.138 A HIC = 2400	VØ = PT = MS =	49000.0 .0000010 .894
		EFF	EX,CT>					
.0000	.0000	.0000	.0001	.0001	.0001			
.0001	.0001	.0002	.0002	.0002	.0003			
.0000	.0001	.0001	.0002	.0002	.0004			
.0000	.0000	.0000	.0000	.0001	.0002			
.0000	.0000	.0000	.0000	.0000	.0000			
		EFPC	EX.CT>					
0336	0927	.0143	0414	0172	0734			
. 4099	.41 10	.4039	.3911	.3971	.2796			
.7835	.7675	.7085	.7309	.7255	.6872			
.8858	.8004	.8221	.8011	.8528	.8420			

Dependence of polarization seen in experiment

Polarized e[±] production

The way to create circularly polarized positron, left. Crossdiagram is not shown. At the right-the graph of polarization - as a function of particle's fractional energy

The way to create circularly polarized photon

$$\vec{\zeta} = \xi_2 \cdot \left[f(E_+, E_-) \cdot \vec{n}_{\parallel} + g(E_+, E_-) \cdot \vec{n}_{\perp} \right] = \vec{\zeta}_{\parallel} + \vec{\zeta}_{\perp}$$

Polarization effects implemented in KONN

POLARIZATION CURVE APPROXIMATION

EP=POSITRON ENERGY/ Egamma-2mc² EP4=EP-0.4 EP6=EP-0.6 PP=0.305+2.15*EP4 IF(EP.LT.0.4)PP=PP-0.05*EP4-2.5*EP4**3 IF(EP.GT.0.6)PP=PP-0.55*EP6-2.65*EP6**2+0.7*EP6**3 ! PP=PP-0.55*EP6-2.6*EP6**2 IF(PP.GT.1.)PP=1. Sentinel

Depolarization occurs due to spin flip in act of radiation of quanta having energy $0 < \hbar \omega_{\gamma} \le E_1$ where E_1 stands for initial energy of positron. Depolarization after one single act

$$D = 1 - \left| \frac{d\sigma_{\gamma e}(\zeta_1, \zeta_1) - d\sigma_{\gamma e}(\zeta_1, -\zeta_1)}{d\sigma_{\gamma e}} \right|$$

Where $d\sigma_{\mathcal{P}}(\zeta_1,\zeta_1)$ stands for bremstrahlung cross section without spin flip, $d\sigma_{\mathcal{P}}(\zeta_1,-\zeta_1)$ -the cross section with spin flip and $d\sigma_{\mathcal{P}}$ is total cross section.

$$D = \frac{\hbar^2 \omega_{\gamma}^2 \cdot [1 - \frac{1}{3} \zeta_{1\parallel}^2]}{E_1^2 + E_2^2 - \frac{2}{3} E_1 E_2}$$
Energy after
radiation
$$L_{dep} \cong \frac{1}{n \int D(\vec{p}_1, \zeta_1) d\sigma} \longrightarrow L_{dep} \cong \frac{2X_0}{1 - \frac{1}{3} \zeta_{\parallel}^2} \cong 3X_0$$
Rad. length
Depolarization ~5%

Fragment from

A.Mikhailichenko, CBN 06-1, Cornell LEPP, 2006.

Multiple scattering in a target

Kinematical perturbations due to multiple scattering in a target

Let us consider the possible effect of *kinematical* depolarization associated with rotation of spin vector while particle experience multiple scattering in media of target before leaving. Typically polarized positron carries out $\simeq (0.5-1)\hbar\omega$ –energy of gamma quanta. As positrons/electrons created have longitudinal polarization, it is good to have assurance that during scattering in material of target polarization is not lost. Each act of scattering is Coulomb scattering in field of nuclei. So BMT equation describing the spin $\vec{\zeta}$ motion in electrical field of nuclei looks like

$$\frac{d\vec{\zeta}}{dt} = \frac{e}{mc^2\gamma} \left\{ G\gamma + \frac{\gamma}{\gamma+1} \right\} \cdot \vec{\zeta} \times \left(\vec{E} \times \vec{v}\right), \tag{A16}$$

where $\vec{E} \sim Ze\vec{r}/r^3$ stands for repulsive (for positrons) electrical field of nuclei, factor $G = \frac{g-2}{2} \cong 1.1596 \times 10^{-3} \approx \frac{\alpha}{2\pi}$. Deviation of momentum is <u>simply</u> $d\vec{p}/dt = e\vec{E}$.

So the spin equation becomes

$$\frac{d\vec{\zeta}}{dt} = \frac{1}{mc^2\gamma} \left\{ G\gamma + \frac{\gamma}{\gamma+1} \right\} \cdot \vec{\zeta} \times \left(\frac{d\vec{p}}{dt} \times \vec{\nu} \right). \tag{A17}$$

We neglected variation of energy of particle during the act of scattering, so $\frac{d\vec{p}}{dt} \cong m\gamma \frac{d\vec{v}}{dt}$ and vector \vec{p} just changes its direction. Introducing normalized velocity as usual $\vec{\beta} = \vec{v}/c$, equation of spin motion finally comes to the following

$$\frac{d\vec{\zeta}}{dt} = \left\{ G\gamma + \frac{\gamma}{\gamma+1} \right\} \cdot \vec{\zeta} \times (\dot{\vec{\beta}} \times \vec{\beta}) = \left\{ G\gamma + \frac{\gamma}{\gamma+1} \right\} \cdot \vec{\zeta} \times \frac{d\vec{\varphi}}{dt}, \quad (A18)$$

where $\boldsymbol{\varphi}$ stands for the scattering angle and the vector $d \boldsymbol{\varphi}/dt$ directed normally to the scattering plane. For intermediate energy of our interest $\boldsymbol{\gamma} \sim 40$, so the term in bracket ~1 and, finally

$$\frac{d\bar{\boldsymbol{\zeta}}}{dt} \cong \bar{\boldsymbol{\zeta}} \times \frac{d\bar{\boldsymbol{\varphi}}}{dt}.$$
(A19)

The last equation means that spin rotates to the same angle as the scattering one, i.e. spin follows the particle trajectory.

Spin flip in undulator

Positron or electron may flip its spin direction while radiating in magnetic field. Probability:

$$\frac{1}{\tau} [\sec^{-1}] = w_{flip} = \frac{5\sqrt{3}}{16} \frac{r_0^2}{\alpha} \frac{\omega_0^3}{c^2} \gamma^5 \left(1 - \frac{2}{9} \zeta_{\parallel}^2 - \frac{8\sqrt{3}}{15} \frac{e}{|e|} \zeta_{\perp} \right)$$

Probability of radiation:

$$w_{rad} \cong \frac{I}{\hbar \omega_0 2\gamma^2} = \frac{2}{3} \frac{e^4 H^2 \gamma^2}{m^2 c^3} \frac{1}{\hbar \omega_0 2\gamma^2} = \frac{1}{3} \alpha \gamma^2 \omega_0$$

he ratio
$$\frac{w_{flip}}{w_{rad}} = \frac{15\sqrt{3}}{16} \frac{\tilde{\lambda}_c^2}{\tilde{\lambda}_u^2} \gamma^3 \left(1 - \frac{2}{9} \zeta_{\parallel}^2 - \frac{8\sqrt{3}}{15} \frac{e}{|e|} \zeta_{\perp}\right)$$
(K~1)

Effect of spin flip still small (i.e. radiation is dominating).

Depolarization at IP

- Depolarization arises as the spin changes its direction in coherent magnetic field of incoming beam. Again, here the deviation does not depend on energy, however it depends on location of particle in the bunch: central particles are not perturbed at all. Absolute value of angular rotation has opposite sign for particles symmetrically located around collision axes.
- This topic was investigated immediately after the scheme for polarized positron production was invented. This effect is not associated with polarized positron production exclusively because this effect tolerates to the polarization of electrons at IP as well. Later many authors also considered this topic in detail. General conclusion here is that depolarization remains at the level ~5%

E.A. Kushnirenko, A. A. Likhoded, M.V. Shevlyagin, *"Depolarization Effects for Collisions of Polarized beams"*, IHEP 93-131, SW 9430, Protvino 1993.

Kinematic depolarization in undulator

CONCLUSIONS

Restored start to end code for Monte-Carlo simulation of conversion; Confirmed low K factor possible here; K<0.4 with period 10 mm

Calculations with KONN show that these parameters satisfy ILC

Perturbation of spin is within 10% total (from creation).

This number could be reduced by increasing the length of undulator, making target thinner (two targets) and beams more flat at IP.

UNDULATOR DESIGN

