Summary on Calorimetry talks

DongHee Kim

Kyungpook National University

LCWS07 closing plenary

Contributers(I)

LCWS: Calorimeter I: RPCs and Muons

- Digital Hadron Calorimeter with RPCs Jose Repond (ANL)
- GEM DHCAL Jaehoon Yu (University of Texas at Arlington)
- Status of DHCAL R&D in Europe Vladimir Ammosov
- Muon Identification without Iron John Hauptman (*Iowa State*)
- Photosensor Options for Dual-Readout Calorimetry in the 4th-Concept Aldo Penzo (Trieste)

Calorimeter II: Photosensors and Electronics

- First results of SiPM properties study at Rome Ekaterina Kuznetsova (INFN, Sezione di Roma I)
- Beam test of small scintillation tiles with SiPM Readout Sandro Calcaterra (*LNF IFN*)
- MPPC and Scintillator Readout Uriel Nauenberg
- Solid State Photosensors and Scintillator Direct Coupling Measurements Gerald Blazey (NIU)
- Study of MPPC Performance for the GLD Calorimeter Readout Satoru Uozumi
- PMT Studies, Couplings, Direct Tile Coupling Mikhail Danilov (*Inst. for Theoret. & Exptl. Phys. (ITEP)*)
- R&D for a 2nd generation AHCAL prototype Mathias Reinecke (*DESY*)
- ASIC Developments Christophe De La Taille (*Institut National de Physique Nucleaire... (IN2P3*)
- LC Scintillator based Muon/Tail-catcher R&D Giovanni Pauletta (*Universita degli Studi di Udine*)

Contributers(II)

- LCWS: Calorimeter III: ECAL and FCAL
- ECAL ADC Laurent Royer (Lab. de Physique Corpusculaire (LPC)
- Si/W ECal with Integrated Electronics: Progress & Plans Raymond Frey (University of Oregon)
- Design of the front-end electronics for FCAL Marek Itzik
- Digitizer and DAQ for FCAL Krzysztof Swientek
- A MAPS-based Readout of an Electromagnetic Calorimeter for the ILC Anne-Marie Magnan (*Imperial College - University of London*)
- LCWS: Calorimeter IV: ECAL and Test Beam Results
- ECAL barrel & End-cap mechanical R&D Denis Pierre Grondin (*Lab. de Phys. Subatom. et Cosmolog. (LPSC) Univ.Joseph Fourier*)
- CALICE ECAL Analysis I Anne-Marie Magnan (Imperial College University of London)
- CALICE ECAL Analysis II Cristina Carloganu (*Lab. de Physique Corpusculaire (LPC*)
- CALICE AHCAL Analysis Niels Meyer (DESY)
- Tail Catcher and Combined Analysis Dhiman Chakraborty (*Northern Illinois University*)
- Scintillator+ MPPC ECAL testbeam results Daniel Jeans
- DESY Beam Test Results of EM Calorimeter Prototype Donghee Kim (Kyungpook National University)

Skeleton of given talks

- Total 26 talks
- Talks on sensors, prototype test and beam test results etc..
- Prototypes
 - Silicon/W ECAL,
 - Scint/W ECAL readout w/ MPPC
 - Scint/Fe HCAL readout w/SiPM
 - RPC and GEM: DHCAL
 - ForwardCAL
 - Dual-readout calorimeter :compensation

Detector Concepts

Compensation (Dual-Readout Calorimeter)

Calorimetry and the Concepts

1					
CALORIMETRY					\
ECALs	Silicon - Tungsten	٦		Detector Concept	fc
	MAPS - Tungsten	-			
	Scintillator – Tungsten			SiD	Y
HCALs	Scintillator - Steel	-		LDC	Y
	RPCs - Steel			GLD	Y
	GEMs- Steel			4 th	N
	MicroMegas - Steel				
TCMT	Scintillator - Steel			rimeters v	
Dual- Readout	Scintillator - Steel		segmei	ntation of	th

	1	
Detector Concept	Optimized for PFA	Compensating Calorimetry (hardware)
SiD	Yes	No
LDC	Yes	No
GLD	Yes	Yes
4 th	No	Yes

very fine e readout

ECAL : Si/W & Scint/W

ECAL configuration w/ PFA

```
ECAL : Sampling calorimeter

Solution 1 :
    tungsten (density) – silicon (pixel size ≪ Molière radius)

Pixels size <1 cm² and about 20–30 readout layers
    (15 to 250 Millions channels)

or silicon (pixel size ~ Mip density in showers)

Pixels size ~ 50x50 μm²
    (Tera Pixel Calorimeter)

Solution 2 :
    tungsten – MPPC and scintillator strip

Scint. Strip 1x4–5 cm X, Y and about 30 readout layers
    (about 10 Millions channels)
```

Si-W ECAL prototype

Czech Rep., France, Korea, UK

Design: 30 Si-W layers x 9 wafers

Χ

6x6 1cm x 1cm cells. Three modules, each with different W thicknesses:

layers 1-10 - 1.4mm

layers 11-20 - 2.8mm

layers 21-30 - 4.2mm

Oct/2006 run: all 30 layers are partially instrumented (6 out of 9 wafers / layer).

Total of 30 x 6 x 36 = 6480 channels.

Detailed view of ECAL PCB

ECAL board

6 active wafers

- 36 silicon PIN diodes each
 → 216 channels per board.
- Diode size: $1 \times 1 \, \text{cm}^2$.

Front-End chip

12 FLC_PHY3 front-end chip

- 18 channels / chip
- 13 bit dynamic range

Calibration chips

- 2 calibration switches chips.
- 6 calibration channels per chip.
- 18 diodes per calibration channel.

Line buffers •

- To DAQ part
- Differential.

PCB: ■ 14 layers

- 2.1 mm thick
- Made in Korea

2006 Test Beam

Summary of the data taken

Size on disk: ~ 40 kB/evt

- → 65M events = 2.5 TB for CERN Physics runs
- \rightarrow + 70 M = 3 TB for muon calibration runs

All the reconstruction has been done using the GRID!

Energy Resolution

Linearity

Scintillator strip ECAL

to reduce the number of readout channels orthogonal strips effective 1cm x 1cm area

1600pix MPPC

digital response of each p

MPPC test 1600pix

800 pieces of MPPC tested

• MPPC pixel uniformity laser shot at the center of each

scintillator strip

two mega-strip and extruded strip

prototype ECAL at DESY

SC-ECAL DESY results (preliminary)

energy measurement linearity 1-6GeV

SC-ECAL DESY results (preliminary)

electron resolution (1-6GeV)

Milestones

desy data analysis

- const. 4 times bigger Scintillator ECAL
 - MPPC dev. and 2.5k prod.
 - extrusion scintillator prod.
 - embedded WLS fiber to strip
 - Mega-extrusion
- electronics
- 2008 Beam test at Ferman w
 - to test pi0 reconstruction: r+n>r0+p

Silicon detector layout and

segmentation
One KPiX readout chip for the sensor (1024) ixels, 6 inch wafer)

> KPiX also being considered for Si tracker and **DHCal with GEMs**

Limit on seg. from chip power (≈2 mm²)

Fully functional v1 prototype (Hamamatsu)

Status Summary and Plans (near term)

- KPiX readout chip
 - Currently studying v4 prototype (2x32 channels)
 - Submit v5 in next few weeks (4x32 channels)
 - Improved biasing of MOS capacitors; new poser bus for comparators
 - Optimized shaper time constants
 - Perhaps submit 1024-channel KPiX in Fall

SiD ECAL

- Silicon sensors
 - v2 prototype submitted to industry (40 sensors)
 - Schedule funding limited hope to acquire sensors Fall-Winter
- Readout flex cable short version for first module OK
- Bump bonding first trials (UC Davis) just starting
- → All of the above: a full-depth, single-wafer wide module
- → Test in a beam: (1) electrons; (2) hadrons with HCal

The R&D leading to an "ILC-ready" Si-W ECal technology is progressing well

HCAL: AHCAL with SiPM readout DHCAL: RPC & GEM

Granularity

Recent studies with Pandora PFLOW algorithm (M.Thomson)

Scintillators

- Originally a baseline/backup solution
- Proven technology
- Robust, high rate capability
- sufficiently rad hard
 - 1 Mrad = $10 \text{ kGy or } 10^{15} \text{ n}$
- Cheap (not a cost driver)
- Thoroughly optimized
 - Studies at ITEP, DESY, NIU,

- Trade granularity versus a mplitude resolution
- 3 cm size optimized for sho wer separation
- and semi-digital readout

- - -)

R&D programme

Test beam programme

- Fine structure of hadron showers
- Validate the simulations
- Large scale test of novel sensor technology
- Operational experience for system optimization
 - E.g. calibration and correction strategies

Technical prototypes

- Develop solutions for detector integration
 - Embedded electronics
- Minimize gap width and dead regions
- Obtain basis for cost estimate

Tile HCAL testbeam prototype

SiPM mass production

Production at PULSAR, close collaboration with MEPHI

• Tests on probe station

Multi-stage selection procedu ITEP

- Stability test at elevated ΔV
- SiPM test bench with calibrated LED
- Working point adjusted to 15 pixel/
- Tile WLS SiPM system with Sr sourc 102
- Results in data base

~ 10'000 SiPMs

SATURATION CURVE

Calibration and monitoring

- SiPM response varies by $\sim 5\%$ / K (depending on ΔV)
- The test beam prototype has a highly versatile and redundant LED based monitoring system (electronics: Prague)
 - 1 LED illuminates 18 tiles via fibre bundle
 - PIN-diode controled LED reference signals
 - Low light intensity for gain measurements (single p.e. peaks)
 - Large dynamic range for long-term test of saturation
 - Short pulse length (< 10 ns)
 - Temperature sensors
- Ultimately not needed, goal is here to establish procedures

Mechanics

DESY

Versatile stack

- Modular structure: absorber plates and cassettes
- FE boards via connectors; can upgrade
- Adjustable gap width
- Exchangeable absorber material
- Exchangeable active modules
- Adjustable gap width

Movable stage

- Allow for inclined incidence through high granularity core
- In situ exchange of active layers possible
- Provisions for needs of gaseous detectors
- Integration in CERN and FNAL beams prepared

Noise and dead channels

- Electronics noise (SiPM off):
 Gaussian, width ~1 p.e
- SiPM dark rate: tail
- Above threshold of $\frac{1}{2}$ MIP:
 - 5 hits in 23 layers
 - Occupancy 10^{-3}
 - 3 MIP, 0.1 GeV equivalent
 - Higher in August data
- Channel statistics
 - 98% good
 - 1% bad soldering
 - 1% SiPM long discharge
 - From early selection, improved

MIP = 450 ch, pixel = 30 ch

Two hadrons

- Event overlays
- Frag-ments
- ..

Pion Event display

40 GeV π^- shower in the online display

Hadron data

- Hadron data: linearity and resolution "within expectations"
 - Whatever this means: HCAL not complete yet, MC not digitized yet

Tail Catcher Muon Tracker

- Scintillator x and y strips (100x5x0.5cm³) WLS SIPM
- HCAL readout electronics (320 channels)
- NIU with DESY and FNAL

CALICE installation at CERN SPS

July - Nov. 2006

CALICE detectors installed in the H6b experimental hall at the CERN SPS

successful commissioning

Hadron (electron) beam 6 - 100 (50) GeV

Combining ECAL & HCAL

20 GeV pions

Adding TCMT to ECAL & HCAL

20 GeV pions

HCAL Testbeam Milestone

- CERN 2007: 2 periods of 3 weeks each in July and August
 - Use same beam line (H6) as in 2006
 - Complete detector, angular incidence for HCAL and combined data
- Move to FNAL end of this year
- Goals at FNAL 2008:
 - Low energy hadrons (1 GeV), particle ID
 - CERN FNAL connection of data samples
 - Gas scintillator comparison reference points
 - Common "all scintillator" run with Scint W ECAL (el'x being prepared)
- And beyond:
 - Test neutron hit tagging for PFLOW and Lead as HCAL absorber
 - Time-sensitive (2nd generation) electronics hadronic energy resolution
 - Maybe test strip option, *if* encouraged by simulation and PFLOW reconstruction studies

FNAL Test Beam

ECAL Technological Prototype

- Mechanical prototype of a (~ 1/2) module 150 cm long, 3x18 cm wide, 30 layers
 - partially equipped with detector: one line & one column, 5x5 mm² cells
 - 1800 + 10800 channels
 - Test full scale mechanics + PCB
 - Can go in test beam
 - Test full integration + edge connections
- Similar in channel # to physics prototype

HCAL technological prototype

- Limitations of test beam prototype: not scalable
 - Front end electronics components can be integrated
 - Scintillator and active layer thickness can be minimized
 - Electronics can be optimized to SiPM signal
 - Calibration system can be simplified
 - Assembly can be less labour-consuming
- An example for a scintillator calorimeter with integrated photo-sensors does not exist
- Integration issues:
 - Tile SiPM coupling, tile positioning, SiPM connection
 - ASIC integration, power pulsing, power supply, cooling
 - PCB sub-division, interconnections
 - DAQ interface
 - Calibration system

Technical prototype architecture

LDA (Module concentrator, Optical link)

Very similar to SiW ECAL

Following CALICE / EUDET DAQ concept

Layer units (assembly) subdivided into smaller PCBs HBUs:Typically 12*12 tiles, 4 ASICs

DHCAL: RPC and GEM etc..

Basic Concepts

 Layer of gas detector sandwiched by absorber plates

 Embedded on-board digital electronics for rapid amplification

 Maintain active gap small to prevent excessive lateral shower spread

Active Media

- Resistive Plate Chambers (RPC): ANL and Protvino
 - Low cost and simple construction
 - Behaviors well understood
 - Rate limited by the recovery time (a few 100Hz)
- Gas Electron Multiplier (GEM): UTA
 - Low operation HV
 - Relatively new technology and characterization in progress
 - Short recovery time → can handle high rate
 - Large area coverage
 GEM foil cost must be reduced
- Micromegas: LAPP, IPNL
 - R&D effort just begun
 - Similar to GEM
 - Cost relatively low

RPC Characterization Study Results

...some results with single readout pad of 16 x 16 cm²

...some results with multiple readout pads of $1 \times 1 \text{ cm}^2$

G. Drake et al., NIM A, 2007.04.160

RPC Characterization Study Results, cnt'd

Long-term stability of 1glass RPC to be proven`

Pad multiplicity much reduced with 1-glass RPC

For $\varepsilon \sim 70 - 95\% \rightarrow M \sim 1.1$

(this result recently confirmed by the Protvino group)

C) RPC Test beam @ FNAL

Tests included 3 chambers

2-glass RPC with digital readout1-glass RPC with digital readout(2-glass RPC with independent digital readout)

Tests took place in February 2006

Mostly ran with 120 GeV protons

Great learning experience !!!!
Results (after corrections) confirmed previous measurements with cosmic rays

RPC construction and testing (Protvino)

Measurements with 1-glass plate chambers

Pad multiplicity ~1.1 for an efficiency of 95% Confirms results obtained at ANL Long term tests ongoing

Constructed 4 chambers with 8x32 pads

One sent to Lyon for testing
Others waiting for MAROC chip + FE-board
Successfully tested with strip readout

Preparation for 1 m² chamber construction

Preparation of facility
Cosmic ray test stand being assembled
Design being finalized

Summary of R&D with RPCs

Measurement	RPC Russia	RPC US
Signal characterization	yes	yes
HV dependence	yes	yes
Single pad efficiencies	yes	yes
Geometrical efficiency	yes	yes
Tests with different gases	yes	yes
Mechanical properties	?	yes
Multi-pad efficiencies	yes	yes
Hit multiplicities	yes	yes
Noise rates	yes	yes
Rate capability	yes	yes
Tests in 5 T field	yes	no
Tests in particle beams	yes	yes
Long term tests	ongoing	ongoing
Design of larger chamber	ongoing	ongoing

Many R&D topics completed

GEM DHCAL Development

- Constructed prototype chambe w/ 10cmx10cm CERN GEM foil
 - Understood basic signal shape an behaviors of GEM foil chambers
 - Understood issues related to constructing chambers

- Developed 30cmx30cm GEM foils with 3M Inc.
 - Foils HV tested and certified
 - Jigs made to mount foils, stack chamber.
 - Multilayer 30cmx30cm anode board made to work w/ Fermilab QPA02-based preamp cards
 - Continually operated, verifying operational stability
- Constructed and beam tested several chambers using these 30cmx30cm foils for beam tests for characterization

30cm x 30cm 3M GEM foils

12 HV sectors on one side of each foil.

Preamps configured to read 96 pads in the center

Use 32 channel FNAL preamps

HV Sector Boundary

GEM Beam Tests

- KAERI in May 2006
 - Exposed a 30cmx30cm chamber to high flux, low energy electron beams
 - Exposure dosage equivalent to about 10 years of ILC running
 - No issues with the chamber operation found
- FNAL-MTBF in Spring 2007
 - Chamber characterization runs
 - 8 GeV mixed beam and 120 GeV protons
 - Data analysis in progress

Some GEM Results

- At the bench test using Sr90 source
 - W/ 40mV threshold → 95% MiP efficiency observed
 - Consistent with our simulation study
 - Multiplicity: ~ 1.27
- From the beam test, the initial measurement of efficiency on 1cmx1cm pad
 - ~90% on the center 1cmx1cm pad when beam is well constrained on the pad
 - Corrections for multi particle events in the 200ns trigger gate needed
 - Initial measurement of the cross talk rates
 - In the two neighboring pads → <25% but need to clean up results
 - Initial studies on double proton events show about 20% double proton events
 - Initial noise rate measurement : < 0.2Hz

RPC&GEM Schedule and Plans

■ Late 2007 – Mid 2008

- Complete 1m³ prototype RPC
- Construct large scale GEM unit boards (30cmx1m)
- Start constructing GEM chambers for 1m³ prototype if funding allows
- Test 8X32 fully equipped GRPC/µMEGAS w/ 2nd generation ASICs at DESY

■ Mid – late 2008

- Complete RPC beam exposure for MC validation together with CALICE Si/W and/or Sc/W ECAL
- Construct a large area (1m²) fully equipped GRPC/µMEGAS w/ 2nd generation ASICs and test at FNAL
- Start GEM 1m³ prototype stack construction
- Beam test TGEM based prototype as an alternate, cost reducing solution

■ Late 2008 - 2009

- Complete GEM 1m³ prototype stack
- Beam exposure of (hopefully) a full 40 layer stack GEM DHCAL
- Prototype stack w/ 2nd generation ASICs and mechanics

FCAL

ECal and Very Forward Tracker acceptance region.

Physics at the ILC, e.g.: 10^6 (e⁺e⁻ \rightarrow W⁺W⁻) per year 10^6 (e⁺e⁻ \rightarrow q⁺q⁻) per year GigaZ: 10^9 events per year

IP

•Precise measurement of the integrated luminosity ($\Delta L/L \sim 10^{-4}$)

Provide 2-photon veto

- Provide 2-photon veto
- •Serve the beamdiagnostics using beamstrahlung pairs

•Serve the beamdiagnostics using beamstrahlung photons

5mrad_____

Challenges:

High precision, high occupancy, high radiation dose, fast read-out!

FCAL Status

- The FCAL Collaboration develops the detectors in the very forward region of the ILC independent of a detector concept.
- MC simulations allowed to develop a very clear understanding of the p hysics background, beam-beam effects and the requirements on positi oning and precision.
- Precision and position monitoring is essential for the LumiCal. Radiati on hard sensors are of crucial importance for the BeamCal.
- We have an intensive R&D activity on radiation hard sensors. We investigate CVD diamond, GaAs, SiC and start to investigate radiation hard Si.

Test beam at the to for High Dose It is 1505 2 CCD vs dose at 50V

S-DALINAC

Tech. University of Darmstadt

Silicon starts to degrade at 30 kGy. High leakage currents. Not recoverable.

CVD diamonds still operational after absorbing 7MGy.

Summary

- ECAL(Si/W,Sc/W) prototype has been tested with beam and preliminary results out
- HCAL (Sc/Fe, RPC and GEM) Prototype also
- More test beam will happen with more prototype mainly at Fermilab for the next few years
- Efforts have been started for technological prototypes
- Fruitful results expected at the next meeting.