ATF2 Q-BPM commissioning

D. McCormick, J. May, G. White, T. Smith SLAC S. Boogert, M. Slater, B. Maiheu RHUL Y. Honda, N. Terunuma KEK

ATF2 meeting (LCWS2007, DESY Hamburg) 31st May 2007

Talk outline

- Cavity BPMs operating 50 to 100nm resolution have previously been preserve of research projects. Not essential operation diagnostics
- First pulse calibration
- Processing algorithms
 - Digital down conversion
 - Waveform fitting
- Integration in ATF2
 - Readout system
 - Calibration
 - Mover system
 - RF cw tone
 - Local oscillator/thermal monitoring
- Implementation
 - Single board VME computer
 - Processing computer
- Current status and mile stones
 - Quad and BPM test stand
 - Integrated readout, processing, calibration test

First pulse calibration (D. McCormick)

- Careful phase matching of cables
 - Between different BPMs
 - Knowledge of distance between BPMs
- Predict the beam arrival time and hence signal phase
- Only phase information to determine direction
- Scale determined from test measurements or calculation
- Requires no changes to analysis

Processing algorithms

- Two principally used with waveform digitization
 - Digital down conversion
 - Fast, easy to control, robust
 - Full waveform fitting
 - Frequency, decay constants
 - Slow, prone to difficulties with not standard waveforms
- Commissioning specific problems
 - Large amplitude saturated pulses
 - Phase extraction for first pulse calibration
- Integration issues
 - Debugging
 - User changeable codes
 - Display of intermediate results (phase, amplitude, I,Q, etc)
 - Slow control
 - Calibration procedures
 - Calibration database

Waveform fitting

• Directly fit to decaying oscillating function

$$f(t;\omega,\Gamma,\phi) = A \exp\left(-\frac{t}{\Gamma}\right) \sin(\omega t + \phi)$$

- Alternatively FT of signal and extract frequency and decay constant
 - More problematic when the signal saturates either RF electronics or digitizer
- Useful cross check of primary algorithm (DDC)

Digital down conversion

- Last phase of mixing performed digitally
- Mix signal with complex local oscillator (require frequency from FT or fit)
- Low pass filter result and sample result at given time (t₀)
- Simple linear execution time algorithm
- No minimizers or complicated complicated mathematics required

Extracting position (and tilt)

Compute Quadrature and Inphase

$$I = \frac{A}{A_{REF}} \cos(\phi - \phi_{REF})$$
$$Q = \frac{A}{A_{REF}} \sin(\phi - \phi_{REF})$$

• Simple rotation from IQ to position (or tilt)

$$x = S\left(I\cos(\phi_{IQ}) + Q\sin(\phi_{IQ})\right)$$

- S scaling factor to real position, from calibration
 - Beam movement
 - BPM movement

Processing algorithms

UCL HEP CVS Repository

especSoft/libbpm

UCL HEP CVS Repository

Project Root

LC Energy Spectrometer 🗧 Go

File PAC07_paper/ att2/ seaBpmNote/ especSoft/ Download tarball

- All nanoBPM algorithms have been refactored into simple
- http://cvs.hep.ucl.ac.uk/viewcvs/

especSoft/libbpm

Current directory: [LC Energy Spectrometer] / especSoft / libl Files shown: 17

File	Rev. Age	Aut	hor Last log entry	
Attic/ [show				
contents]		•		
<u>bpm/</u>	•	Sim	ple c code	
Spmalloc/		_	No external	
Spmanalysis/			denendences	
bpmcalibration/				
Spminterface/		_	Can be impleme	ented
bpmmessages/			on any system	
S bpmnr/		_	Hooks for matla	b and
Spmorbit/			labview	
S bpmprocess/		_	Simple to integr	oto into
S bpmrf/		_	Simple to integr	
bpmsimulation /				SSUCH
a examples/			as EPICS/V-Sys	stem
labview/				
💐 <u>matlab/</u>				
Toot-wrapper/				

Saturated pulses

- Post shutdown possible to have orbits ~mm from BPM electrical centers
 - Test algorithms at large beam offset
- Tests performed in December 06
 - BINP designed c-band cavities
 - ATF2 processing electronics
 - Resolution ~50nm
- Moved BPMs to 1.5mm
 - Position reconstruction reasonable out at 1.5mm
 - Must verify algorithms or develop modified algorithms for large amplitude pulses
- Groups focused on resolution/cross coupling etc not large signal regime

Readout models

Database design

- Start development of EPICS database
 - Example given right
- What warnings/error checking should be implemented
 - During calibration?
 - Definitely saturation
 - Problems with analysis
- Links to calibration database
 - Ability to populate EPICS database with stored values from ATF
 - First pulse
 - After long shutdowns

BPM raw data

- bpm1:waveform_x
- bpm1:waveform_Y
 BPM processed data
- bpm1:A_X,A_Y
- bpm1: $\phi_{X,} \phi_{Y}$
- bpm1: I_X, I_Y
- bpm1:Q_X,Q_Y
- bpm1:x,y
- bpm1: $\omega_{X,}\omega_{Y}$
- bpm1: Γ_X, Γ_Y
- bpm1:calibrating
- bpm1:saturation
- bpm1:analysis
 BPM calib ration
- bpm1:scale_X,scale_Y
- bpm1: Φ_{IQ}, Φ_{IQ} Quad related
- quad1:x,y
- quad1:lvdt_i

Calibration and monitoring

- Online monitoring found essential is cavity BPM operation
 - Waveform viewers
 - Strip-charts
- Calibration algorithms exist
 - Best results obtained when the beam jitter is subtracted
 - This is more complicated in the presence of quad fields
 - Switch off quads (so that a straight orbit fit is possible)
 - Perform beam jitter subtraction in presence of quads
- Must develop sustainable solution
 - EDM
 - Strip tool
 - Other solution

Quad + BPM package test measurements

- Quad+BPM package measurements
- Calibration
 - Frequency and decay constants
 - Range of mover calibration
 - Number of position points
 - Machine pulses per position
 - Automated frequency and decay constant extraction
- Large offset measurements
 - Repeat large offset measurements
- Repeat with quad on and off

Summary

- Test control/readout system Fall 2007
- Need to make basic design choices (UK and SLAC have some manpower)
 - EPICS controller (RTEMS, Vxworks)
 - Calibration database
 - Monitoring and controls
 - Clear V-system with drive EPICS side
 - Debug/expert monitoring
 - Separate CPUs for BPM processing
 - Part of ATF-infrastructure
 - Dedicated machine?
- Algorithms and techniques well tested
 - First pulse (just phase, should not be a problem)
 - DDC and fitting will be implemented