Calorimetry Studies in the 4th Concept

On behalf of 4th Concept Software Group

- D. Barbareschi
- V. Di Benedetto
 - E. Cavallo
 - F. Ignatov
- A. Mazzacane
- G. Tassielli
- G. Terracciano

June 2nd, 2007

LCWS 2007 - C. Gatto

Outlines

- New resolution plots for HCAL with increased statistics
- New Dual Readout ECAL
- More studies involving calorimetry and Muon Spectrometer

Simulation Details

- Full simulation is in place HCAL and ECAL (no gaussian smearing nor perfect pattern recognition)
- Hits using Fluka (for calorimeter studies)
- Cerenkov and Scintillation photon production and propagation in the fibers fully simulated
- Full SDigits + Digits + Pattern Recognition chain implemented
- PID implemented

Reconstruction Details (ECAL and HCAL)

- Build Clusters from cells distant no more than two towers away
- Unfold overlapping clusters through a Minuit fit to cluster shape (in progress)
- Get η_{s} and η_{c} with a calibration run at 40 GeV
- Compute E_{tot} from E_C and E_S with:

 $\eta_{s}^{*}E_{s}(\eta_{c}^{-1}) - \eta_{c}^{*}E_{c}(\eta_{s}^{-1})$

$$\eta_c-\eta_s$$

Etor

June 2nd, 2007

The 4th Concept Hadron Calorimeter

Cu + scintillating fibers + Ĉerenkov fibers

- 3° aperture angle
- ~ 10 λ_{int} depth
 Fully projective geometry
 Azimuth coverage
 down to 3.8°
 Barrel: 13924 cells
 Endcaps: 3164 cells

HCAL Cells

Bottom view of single cell

Bottom cell size: ~4.8 cm

Top cell size: ~ 8.8 cm

Number of fibers inside each cell: 1980 equally subdivided between Scintillating and Cerenkov Fiber stepping ~2 mm Prospective view of clipped cell

Cell length: 150 cm

HCAL Performance Studies

- Studies redone with larger statistics
- Single particle and jet performance (see A. Mazzacane's talk on jet finding)
- Improved pattern recognition has negligeable effect

40 GeV Reconstructed Pion

9

HCAL resolution with single π

10

HCAL response with single π

Jets Performance Studies

- e⁺e⁻ -> qq generated in E_{cm} = [60, 500] GeV range
- Only <u>total reconstructed energy</u> considered
- No attempt to reconstruct the jet or to correct for escaping muon
- See A. Mazzacane's talk for jet finding

60 GeV dijets events

Di-jets Energy Resolution

HCAL resolution with di-jets

HCAL response with di-jets

The 4th Concept Crystal Calorimeter

- 25 cm PbF₂ with 0.15% Gd doping
- ~ 1.25 λ
- ~ 27.7 X/X_o
- Fully projective geometry
- ~1.5° aperture angle
- Azimuth coverage down to 3.4°
- Barrel: 55696 cells
- (944slices containing 236 ce
 Endcaps: 12656 cells
 arranged in 108 rings

ECAL Performance Studies

- Assume 10% QE and PbF2 doped with 0.15% Gd
 - Scintillation pe yield: 4.5 pe/MeV
 - Cerenkov pe yield: 1.5 pe/MeV

 Preliminary resolution results with π^o in 10-200 GeV range

• $\tau \rightarrow \nu \pi \gamma \gamma$ studies in progress

70 GeV π° in ECAL+HCAL

Resolution for 40 GeV e⁻

Resolution for π^{o} 's ECAL+HCAL

Energy Response for $\pi^{o's}$ ECAL+HCAL

24

MUD and Calorimetry

- Essential for jet reconstruction
 - Measure the momentum of hard particles escaping the calorimeter
 - Tail catcher for HCAL
- Provides continuous calibration via muon brehemstralung

Muon Spectrometer with Dual Solenoid (MUD)

Barrel: 31500 tubes 21000 channels 840 cards End caps: 8640 tubes 9792 channels

456 cards

Total:

40140 tubes 30792 channels 1296 cards

MUD for jet finding and tail catching

MUD for Calorimeter Calibration

e⁺e⁻ -> H^oH^oZ^o -> 4 jets 2 muons

E_{cm} = 500 GeV Efficiency (total) = 92% (no SA tracker)

June 2nd, 2007

MUD Performance

• Tracking is working for:

- P_t > 400 MeV
- $|\theta| > 45^{\circ}$ (barrel only)

High momentum tracks resolution:

• $\sigma(1/p_t) = 1.6 \times 10^{-3}$

Very conservative 200 µm single point resolution used

• Efficiency ($P_t > 6 \text{ GeV}$) = 95%

Conclusions

• Performance of Hadron Calorimeter is good (including pattern recognition) and **INDEPENDENT OF ENERGY**:

 $\sigma_{\rm E}/{\rm E} = 34\%/{\rm VE}$ (single hadrons)

 $\sigma_{\rm E}/{\rm E} = 40\%/{\rm \sqrt{E}}$ (jets – total energy – no corrections)

- Expected to improve with jet finding (recovery of soft tracks and lost muons)
- Detector optimization not yet started (Cu vs Pb, fibers fraction)
- New Dual Readout EMCAL implemented

 $\sigma_{\rm E}/{\rm E} = 6\%/{\rm VE}$ ECAL (very preliminary)

 $\sigma_{\rm E}/{\rm E} = 9\%/\sqrt{\rm E}$ ECAL+HCAL (very preliminary)

- $\pi^{o} \rightarrow \gamma \gamma$ separation from τ decay is under study
- Very high efficiency of muon finding in the midst of 4 jets (Muon LCWS 2007 - C. Gatto

Finding muons in the midst of jets

Backup slides

June 2nd, 2007

4th Concept Detector Layout

Present Status: VXD+TPC+DREAM

Dream Performance (pions)

m-System basic element: drift tube

radius 2.3 cm filled with 90% He – 10% iC₄H₁₀ @ NTP gas gain few × 10⁵ total drift time 2 µs primary ionization 13 cluster/cm $\Rightarrow \approx$ 20 electrons/cm total both ends instrumented with:

•	> 1.5 GHz bandwith	ASIC chip
•	8 bit fADC	under

- > 2 Gsa/s sampling rate development
- free running memory

for a

• fully efficient timing of primary ionization: cluster counting

at INFN-LE

- accurate measurement of longitudinal position with charge division
- particle identification with dN_{cl}/dx

Full Spectrometer

Fjune 2nd, 2007

LCWS 2007 - C. Gatto

Valencía, 8.11.2000

Present Status: VXD+TPC+DREAM

P_t Resolution (0.3-20 GeV)

49

Tracking Algorithm

- Primary TPC seeding: looks for tracks with 20 hits (pads and/or μmegas) apart + beam constraint
- Secondary TPC seeding: looks for tracks with hits in layer 1, 4 and 7 (no beam constraint)
- **Parallel Kalman Filter** then initiated:
 - 1st step: start from TPC fit + prolongation to VXD (add clusters there)
 - 2st step: start from VXD, refit trough TPC + prolongation to MUD
 - 3st step: start from MUD and refit inword with TPC + VXD
- Final step: isolated tracks in VXD and in MUD
- Kinks and V0 fitted during the Kalman filtering
- All passive materials taken into account for MS and dEdx corrections

June 2nd, 2007

MUD Simulation

- Individual Drift Tubes, no support, electronics, services
- Gaussian smearing of hits (200µm x 4mm) to make Fastrecpoints (no Cluster Counting yet)
- Pattern recognition through Parallel Kalman Filter
- Standalone Tracker not yet implemented

Muon Spectrometer

A. Mikailicenko talk, ILC Workshop Valencia 2006

Dual Solenoid B-field

Magnetic field of dual solenoid and wall of coils

Simulation Steps

- Hits: produced by MC (Fluka)
- SDigits:
 - simulate detector response for each hit (Cerenkov and Scintillation fibers)
 - Simulate electronics
 - Add random noise
- Digits:
 - merge digit from several files of SDigits (example Signal + Beam Bkgnd)
 - Apply threshold
- Recpoints:
 - Clusterize nearby Digits
 - Unfold overlapping showers

