π^0 reconstruction within the full simulation framework Ph.Gris LPC Clermont-Ferrand IN2P3-CNRS

- Importance of π^0
- Framework of the study
- EM calorimeter calibration
- Single π^0 fits
- π^0 reconstruction in hZ events @ 500 GeV
- Conclusion and prospects

Importance of π^0

- π^0 are an important part of the particle . content in hadronic events
 - $\sim 20\%$ of the visible energy in tt or hZ ≻ events (@500 GeV)
 - most of the photon in an event come \triangleright from π^0 decays
 - Energy spectrum: rather soft photons \geq (55% of the photons with E < 1 GeV)

τID

 \geq

Framework of the study

- Detector: LDC00
- Events: single γ, single π⁰, hZ->bbvv @500 GeV
- Events were processed through the full simulation chain
- Clustering: TrackWiseClustering

EM calorimeter calibration: the method

- Sets of single photon generated in Mokka
- E=0.25, 0.30, 0.35, 0.40, 0.50, 1, 2, 4, 10, 25, 50 GeV
- $0 \le \theta \le \pi/2$: step 0.1
- $0 \le \Phi \le 2\pi$: step $2\pi/16$
- Calibration: $E_{clus} = \alpha (E^{30} + \beta E^{40})$
- β gives the smallest $\sigma(E^{30}+\beta E^{40})$
- α is adjusted after β

 $\beta = 3.0 \pm 0.1$ $\alpha = 27.6 \pm 0.5$ (central) $\alpha = 28.8 \pm 0.5$ (endcap)

EM calorimeter calibration: energy resolution

EM calorimeter calibration: angular resolution

Single π^0 fits

Single π^0 fits

π^0 reconstruction in hZ events@500 GeV

- Many π⁰ may be produced in physics events
- A strategy is needed to perform correct cluster pairings.
- A study has been performed in the following conditions:
 - take hZ->bbvv events @500 GeV
 - For each event: retain only π^0
 - Smear energy and angles of the photons coming from the π^0 decays according to slides 5&6
 - Build an estimator using various information (mass, angle between the two photons, results from a pair fit,...) to make cluster pairs.
 - Estimate our efficiencies and fakes in term of the total π^0 energy of the event

π^0 reconstruction in hZ events@500 GeV

With this estimators:

• in 80% of our events, we reconstruct at least 60% of the total energy coming from π^0 •in 50% of our events, we reconstruct at least 80% of the total energy coming from π^0 The gain due to the fit is visible at low energy

Conclusions and prospects

- π^0 s are an important part of the particle content in hadronic events (20 to 25% of the visible energy in tt or hZ events@500 GeV)
- π^0 energy resolution is highly improved using a constrained fit (from 7.4% to 3.4% overall) in particular at low energies.
- The challenge is now to reconstruct properly π^0 s in hadronic events:
 - multiplicity (24 em clusters from π^0 s on average for hZ->bbvv events@500 GeV) -> need to have the good pairing to avoid fakes
 - clustering: needs to be accurate
- A study was performed on hZ events @ 500 GeV (MC smearing): in 60% of the events, at least 80% of the π^0 energy was properly reconstructed.
- We believe that these results can be improved with refined pairing estimators.
- The next step is to use PFA and PhotID algorithms to perform π^0 reconstruction in the most realistic conditions.