One-loop corrections to chargino decays

Krzysztof Rolbiecki

Institute of Theoretical Physics, Warsaw University

31.05.2007

K. Rolbiecki (Warsaw University)

One-loop corrections to chargino decays

LCWS 2007 1 / 16

Outline

K. Rolbiecki (Warsaw University)

э.

Motivation

- radiative corrections in MSSM could be of order 20%
- so far only CP-conserving case at one loop thoroughly examined
- MSSM with CP violating phases:

 $M_1 = |M_1|e^{i\Phi_1}, \mu = |\mu|e^{i\Phi_\mu}, A_f = |A_f|e^{i\Phi_f}$

- $\rightarrow\,$ strong bounds on these phases from EDMs exist, however
- \rightarrow large phases possible if accidental cancelations occur
- \rightarrow or 1st and 2nd generation of squarks are heavy
- $\rightarrow \Phi_1$ poorly constrained
- calculation of radiative corrections to CP violating observables,
 e.g. asymmetries in decay widths, asymmetries of triple products of momenta and/or spins
 - $\rightarrow\,$ such observables provide unambiguous way of detecting CP violating phases
- here we analyze gaugino/higgsino sectors of complex MSSM at one loop level

< ロ > < 同 > < 回 > < 回 >

Chargino sector of MSSM

• chargino mass matrix in gauge eigenstate basis $(\tilde{W}^-, \tilde{H}^-)$

$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \sqrt{2}m_W \cos\beta \\ \sqrt{2}m_W \sin\beta & \mu \end{pmatrix}$$

diagonalization using unitary matrices U and V

$$V^*M_{\widetilde{\chi}^\pm}U^\dagger=\left(egin{array}{cc} m_{\widetilde{\chi}^\pm_1} & 0\ 0 & m_{\widetilde{\chi}^\pm_2} \end{array}
ight)$$

mass eigenstates in Weyl representation

$$U\left(\begin{array}{c}\tilde{W}_{L}^{-}\\\tilde{H}_{d}^{-}\end{array}\right) = \left(\begin{array}{c}\chi_{1L}^{-}\\\chi_{2L}^{-}\end{array}\right) \quad V\left(\begin{array}{c}\tilde{W}_{R}^{+}\\\tilde{H}_{u}^{+}\end{array}\right) = \left(\begin{array}{c}\chi_{1R}^{+}\\\chi_{2R}^{+}\end{array}\right)$$

Dirac spinors

$$\tilde{\chi}_{1}^{-} = \begin{pmatrix} \chi_{1L}^{-} \\ \chi_{1R}^{-} \end{pmatrix}, \quad \tilde{\chi}_{2}^{-} = \begin{pmatrix} \chi_{2L}^{-} \\ \chi_{2R}^{-} \end{pmatrix}$$

One-loop corrections to chargino decays

Neutralino sector of MSSM

• neutralino mass matrix in gauge eigenstate basis $(\tilde{B}, \tilde{W}^0, \tilde{H}^0_d, \tilde{H}^0_u)$

$$M_{\tilde{\chi}^{0}} = \begin{pmatrix} M_{1} & 0 & -m_{Z}c_{\beta}s_{W} & m_{Z}s_{\beta}s_{W} \\ 0 & M_{2} & m_{Z}c_{\beta}c_{W} & -m_{Z}s_{\beta}c_{W} \\ -m_{Z}c_{\beta}s_{W} & m_{Z}c_{\beta}c_{W} & 0 & -\mu \\ m_{Z}s_{\beta}s_{W} & -m_{Z}s_{\beta}c_{W} & -\mu & 0 \end{pmatrix}$$

diagonalization of mass matrix

$$\operatorname{diag}(m_{\tilde{\chi}_{1}^{0}},m_{\tilde{\chi}_{2}^{0}},m_{\tilde{\chi}_{3}^{0}},m_{\tilde{\chi}_{4}^{0}})=N^{*}M_{\tilde{\chi}^{0}}N^{-1}$$

 mass eigenstates - Weyl spinors χ⁰_i and Majorana spinors χ̃⁰_i (*i* = 1, 2, 3, 4)

$$\begin{pmatrix} \chi_1^0\\ \chi_2^0\\ \chi_3^0\\ \chi_4^0 \end{pmatrix} = N \begin{pmatrix} \tilde{B}\\ \tilde{W}^0\\ \tilde{H}_d^0\\ \tilde{H}_d^0\\ \tilde{H}_u^0 \end{pmatrix} \qquad \tilde{\chi}_i^0 = \begin{pmatrix} \chi_i^0\\ \bar{\chi}_i^0 \end{pmatrix}$$

Chargino decays at the tree-level

here we consider only genuine 3-body decays

- \Rightarrow sleptons heavier than chargino: $m_{\tilde{\ell}}, m_{\tilde{\nu}} > m_{\chi^{\pm}}$
- mass difference between chargino and neutralino smaller than m_W
- In lepton channel only one particle detectable
- diagrams with Higgs exchange relevant only for heavy fermions
- shape of the decay distributions important at ILC for measurement of chargino and lightest neutralino masses

Renormalization scheme

We work in the on-shell scheme:

- regularization by dimensional reduction
- physical masses are input parameters
- renormalization conditions defined at the pole masses
- no mixing between particles on-shell
- renormalization is performed after rotation of fields to mass eigenstate basis
- introduce renormalization constants for fields and mixing matrices
- attention needed: the number of observable masses exceeds the number of free parameters
 - \Rightarrow e.g. in chargino/neutralino sector in the CP conserving case we have 4 parameters (M_1 , M_2 , μ , tan β) and 6 masses

Renormalization of charginos and neutralinos

1PI renormalized Green's function

$$\underbrace{\tilde{\chi}_{j}}_{\boldsymbol{k} \to \boldsymbol{\xi}} \underbrace{\tilde{\chi}_{i}}_{\boldsymbol{k} \to \boldsymbol{\xi}} = \hat{\Gamma}_{ij}^{\tilde{\chi}} = i(\boldsymbol{k} - \boldsymbol{m}_{\tilde{\chi}_{i}})\delta_{ij} + i\hat{\Sigma}_{ij}^{\tilde{\chi}}(\boldsymbol{k}^{2})$$

substitute in Lagrangian wave function and mass counter terms

$$\tilde{\chi}_i \to (\delta_{ij} + \frac{1}{2}\delta \tilde{Z}_{ij}^L P_L + \frac{1}{2}\delta \tilde{Z}_{ij}^R P_R)\tilde{\chi}_j, \qquad m_{\tilde{\chi}_i} \to m_{\tilde{\chi}_i} + \delta m_{\tilde{\chi}_i}$$

renormalization conditions:

 \Rightarrow poles at $k^2 = m_{\tilde{\tau}}^2$, residues equal 1 and no mixing on-shell

introduce counterterms for mixing matrices

$$\delta U_{ij} = \frac{1}{4} \sum_{k=1}^{2} \left(\delta \tilde{Z}_{ik}^{\pm,R} - (\delta \tilde{Z}_{ki}^{\pm,R})^{*} \right) U_{kj} \qquad \delta V_{ij} = \frac{1}{4} \sum_{k=1}^{2} \left(\delta \tilde{Z}_{ik}^{\pm,L} - (\delta \tilde{Z}_{ki}^{\pm,L})^{*} \right) V_{kj}$$
$$\delta N_{ij} = \frac{1}{4} \sum_{k=1}^{4} \left(\delta \tilde{Z}_{ik}^{0,L} - \delta \tilde{Z}_{ki}^{0,R} \right) N_{kj}$$

Structure of corrections

- three types of one-loop contributions: box diagrams, vertex diagrams and self-energy diagrams
- to obtain physically meaningful result inclusion of soft and hard photon bremsstrahlung necessary

One-loop corrections to chargino decays

Decay width

particle	$\tilde{\chi}_1^{\pm}$	$\tilde{\chi}_1^0$	ẽ₋	<i>ẽ</i> _R	$\tilde{\nu}_{e}$
mass [GeV]	165.3	97.9	287.9	221.9	276.6
particle	$\tilde{ au}_1$	$ ilde{ au}_1$	\tilde{q}_L	\tilde{q}_R	H^{\pm}
mass [GeV]	211.9	289.0	561.3	544.3	436.4

- only genuine 3-body decays allowed: $\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 e^+ \nu_e$, $\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 \mu^+ \nu_\mu$, $\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 \tau^+ \nu_\tau$, $\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 u \bar{d}$, $\tilde{\chi}_1^+ \rightarrow \tilde{\chi}_1^0 c \bar{s}$
- correction in leptonic modes typically of the order of 5%

decay mode	tree-level width	one-loop width
$e u_e ilde{\chi}_1^0$	4.18 keV	4.38 keV
$\mu u_{\mu} ilde{\chi}_{1}^{0}$	4.18 keV	4.38 keV
$ au u_{ au} \tilde{\chi}_1^0$	4.38 keV	4.61 keV

★ ∃ > < ∃ >

Lepton energy distribution

- one-loop corrections to electron and τ energy distributions in 3-body chargino decays
- electron distribution shifted slightly towards lower energies due to photonic corrections

Φ_{M_1} dependence

- width Γ(˜χ⁺₁ → ˜χ⁰₁e⁺ν) and ratio of branching fractions BR(˜χ⁺₁ → ˜χ⁰₁e⁺ν)/BR(˜χ⁺₁ → ˜χ⁰₁τ⁺ν_τ) show strong dependence on the phase Φ_{M1}
- radiative corrections more significant around $\Phi_{M_1} = 0$

Angular distribution

angular distribution of e⁺/e⁻ with respect to chargino spin vector

for Φ_{M1} = π/2 significant difference between corrections to e⁺
 e⁻ distributions

LCWS 2007 13 / 16

Angular distribution

- angular distribution of e^+/e^- with respect to chargino spin vector
- for $\Phi_{M_1} = \pi/2$ significant difference between corrections to e^+ and e⁻ distributions

Measuring CP violation

Many possible methods to measure CP violating phases:

⇒ using CP-even observables – requires high precision of measurement

 A_{12} [%]

8

4

3

2

- ⇒ looking for CP asymmetries in production, e.g. charginos $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^{\mp}$
 - → see Per Osland talk
- ⇒ constructing CP- or T-odd triple products using momenta and/or spins in production and/or decay processes
 - \rightarrow see Stefan Hesselbach talk

 Φ_{μ}

 $e^+e^- \rightarrow \tilde{\chi}_1^{\pm}\tilde{\chi}_2^{\mp}; \cos\theta = -0.8$

3

< 6 b

Charge asymmetry

• asymmetry in decay widths between $\tilde{\chi}_1^+$ and $\tilde{\chi}_1^-$

$$A_{+-}^{\mathbf{e}\nu} = \frac{\Gamma(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \mathbf{e}^+ \nu_{\mathbf{e}}) - \Gamma(\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \mathbf{e}^- \bar{\nu}_{\mathbf{e}})}{\Gamma(\tilde{\chi}_1^+ \to \tilde{\chi}_1^0 \mathbf{e}^+ \nu_{\mathbf{e}}) + \Gamma(\tilde{\chi}_1^- \to \tilde{\chi}_1^0 \mathbf{e}^- \bar{\nu}_{\mathbf{e}})}$$

• sensitive to the CP phase of the bino mass parameter M₁

easy:

- \rightarrow counting experiment
- ightarrow large chargino production rate ($\sigma \sim$ 200 fb)

E 6 4

- accurate determination of asymmetry possible
- access to CP properties of neutralino sector

Summary and outlook

- one-loop corrections to leptonic chargino decays calculated important for ILC physics
- loop corrections induce significant CP violation effects in chargino sector
- might be useful for determination of CP phases in chargino/neutralino sector
- Outlook
 - Full analysis of production+decay required.
 ⇒ Tania Robens' talk
 - Careful treatment of CP violating case.

< ロ > < 同 > < 回 > < 回 >