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Phase leads to CP violation

Could be cancellations, allowing lighter superparticles

Electron and neutron EDM’s

Kizukuri, Oshimo, 1992; Ibrahim, Nath, 1998,...

Ellis, Ferrara, Nanopoulos, 1982; Buchmuller, Wyler, 1983,...
Constraints on superparticle masses, order TeV
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Chargino “pair” production:

Claim:
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Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).
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Parity and charge transformation:

2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

c.m. 
frame

three-momentum spin other QN’s

2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

S-matrix element:

transforms under P, C, CP ...



2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

2

Following many authors we work within the simplest version of unconstrained MSSM making no assumptions about
the symmetry breaking mechanisms [14], neither do we impose any constraints on the CP-violating phases. The R-
parity and the lepton flavour violation is not permitted, though, as noted in [7], the modification for less constrained
models can easily be done. Besides, just to simplify sample calculations we assume that all slepton masses are large,3

and, of course, neglect everything proportional to the electron mass. We do not calculate the one-loop cross section
here, neither do we give a review of the magnitude of the CP-odd observables in various parameter points. Instead,
we pick a specific parameter set that allows us to neglect most of the diagrams and show that the effect is indeed not
cancelled at the one-loop order. A more complete analysis will be published elsewhere.

The paper is organised as follows. In Sec. II we investigate how the S-matrix element of the process (1.1) behaves
under CP transformation. This consideration immediately suggests a CP-odd candidate observable. Next, in Sec. III
we review the diagrams appearing at the tree and one loop levels, picking up those that may give significant contribu-
tions to our observable in a chosen parameter region. Finally, in Sec. IV we give some numerical estimates based on
calculations of selected graphs. The Lagrangian coupling definitions and mass matrix parametrization are sketched
in Appendix A.

II. CP TRANSFORMATION OF THE CROSS SECTION AND THE CP-ODD OBSERVABLE

Let us consider chargino production in e+e− annihilation allowing for polarized initial beams:

e+(p1, P+) + e−(p2, P−) → χ̃+
i (k1) + χ̃−

j (k2), (2.1)

where Pµ
± are the positron and electron polarization four-vectors [16] (see also [17]). The crucial point here is that

for i "= j the charginos do not form a particle-antiparticle pair. Hence, while the initial state (for suitably chosen
polarizations, P+ ↔ P−) is in the c.m. frame odd under charge conjugation, the final state has no such symmetry.
We shall take a closer look at this.

The C and P unitary operators act in Fock space and transform the creation operators as [18, 19]:

Pa†(p, σ, n)P−1 = ηna†(−p, σ, n),

Ca†(p, σ, n)C−1 = ξna†(p, σ, nc),

where η and ξ are the intrinsic space inversion and charge-conjugation phases (parities), p is the three-momentum, σ
labels spin components, while n and nc refer to other quantum numbers4 for particle and antiparticle, respectively.
Hence, under P and C, and CP conjugation the S-matrix element

〈χ̃+
i (k1), χ̃

−
j (k2)|S|e+(p1, P+), e−(p2, P−)〉 (2.2)

of the process (2.1) gets transformed into (up to a phase that does not affect the cross section):
P:

〈χ̃+
i (−k1), χ̃

−
j (−k2)|S|e+(−p1, P+), e−(−p2, P−)〉, (2.3)

C:

〈χ̃−
i (k1), χ̃

+
j (k2)|S|e−(p1, P+), e+(p2, P−)〉, (2.4)

and CP:

〈χ̃+
j (−k2), χ̃

−
i (−k1)|S|e+(−p2, P−), e−(−p1, P+)〉. (2.5)

From Eqs. (2.3)–(2.5) one sees that the cross section for the P-conjugated process can be obtained by the change
of sign of the particle three-momenta:

p1,2 ↔ −p1,2, k1,2 ↔ −k1,2; (2.6)

3 One could refer to the parameter space area around the so-called SPS 2 benchmark point [15], but remember that the latter classification
assumes an mSUGRA breaking mechanism with no CP-violating phases.

4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).

3

the C-conjugation amounts to the following substitution in the cross section:

p1 ↔ p2, k1 ↔ k2, mi ↔ mj , P+ ↔ P−; (2.7)

and the CP-transformation results in the change:

p1 ↔ −p2, k1 ↔ −k2, mi ↔ mj , P+ ↔ P−. (2.8)

To find candidates for CP-sensitive observables, let us write the cross section as

dσ = dσ0 + (terms linear in |P±|) + (. . .)|P−||P +|,

where dσ0 does not depend on polarization vectors and will be referred to as the unpolarized part. The second and
higher power of |P−| or |P +| cannot arise, because the only way a polarization vector can enter the cross section is
due to the helicity projectors [17] composed of the Dirac spinors in the amplitude:

u(p, λ)u(p, λ) =
1

2
(1 + γ5 #P )(#p + m),

v(p, λ)v(p, λ) =
1

2
(1 + γ5 #P )(#p − m), (2.9)

while the amplitude contains only one Dirac spinor for each external fermion.
Consider the unpolarized part. Poincaré invariance forces it to depend only on masses mi, mj and on two indepen-

dent scalar variables, say, on Mandelstam’s s ≡ (p1 + p2)2 and t ≡ (p1 − k1)2. The latter do not change under the
transformations (2.6)–(2.8), so the CP-transformation for the unpolarized cross-section is reduced to the interchange
of the masses in the resulting formula5. Therefore, for equal-mass fermions in the final state (i = j) the unpolarized
cross section is always P-, C- and CP-even6. In contrast, if the chargino species are different, CP-violating terms can
arise even in the unpolarized cross-section. That is the effect we will consider here, so unless otherwise stated the
final-state chargino masses are taken non-equal.

Calculations show that the tree-level cross section (polarized and unpolarized) of the process (2.1) is CP even [7],
but, as we shall see, CP-odd terms do arise in the one-loop contributions. Therefore, a natural experimental observable
to consider is the ratio

dσodd
0

dσ0
, (2.10)

where dσodd is the CP-odd part of the corresponding cross-section:

dσodd
0 =

1

2

[

dσ0 − dσCP
0

]

, dσCP
0 ≡ dσ0

∣

∣

∣

mi↔mj

. (2.11)

As just mentioned, the CP violation first enters at one loop, thus, to estimate the effect one should caculate dσodd
0

at the one-loop level. On the other hand, in most of the kinematical regions far from any resonance, one can expect
(see, e.g, [20, 21]) that the tree-level gives a reasonable approximation to dσ0 in the denominator of Eq. (2.10). So,
we will deal only with the ratio

dσodd
0

∣

∣

1 loop

dσ0|tree
. (2.12)

In the following Sections we discuss the diagrams that (may) contribute to this observable and provide some sample
calculations.

5 Of course, the coupling constants at vertices with charginos should be considered as functions of the chargino masses, or, better, the
mass indices i, j.

6 The famous forward-backward asymmetry term in the unpolarized cross-section of, say, e+e− → µ+µ− scattering, which is often referred
to as parity violating, in fact only indicates the presence of parity violating term in the interaction, the unpolarized cross-section itself
being, of course, P-even.
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4 Like charge, chargino mass index, etc. Following most common convention, we treat the positive chargino as particle, its antiparticle is,
of course, the negative chargino with the same mass (mass index).
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the C-conjugation amounts to the following substitution in the cross section:

p1 ↔ p2, k1 ↔ k2, mi ↔ mj , P+ ↔ P−; (2.7)

and the CP-transformation results in the change:

p1 ↔ −p2, k1 ↔ −k2, mi ↔ mj , P+ ↔ P−. (2.8)

To find candidates for CP-sensitive observables, let us write the cross section as

dσ = dσ0 + (terms linear in |P±|) + (. . .)|P−||P +|,

where dσ0 does not depend on polarization vectors and will be referred to as the unpolarized part. The second and
higher power of |P−| or |P +| cannot arise, because the only way a polarization vector can enter the cross section is
due to the helicity projectors [17] composed of the Dirac spinors in the amplitude:

u(p, λ)u(p, λ) =
1

2
(1 + γ5 #P )(#p + m),

v(p, λ)v(p, λ) =
1

2
(1 + γ5 #P )(#p − m), (2.9)

while the amplitude contains only one Dirac spinor for each external fermion.
Consider the unpolarized part. Poincaré invariance forces it to depend only on masses mi, mj and on two indepen-

dent scalar variables, say, on Mandelstam’s s ≡ (p1 + p2)2 and t ≡ (p1 − k1)2. The latter do not change under the
transformations (2.6)–(2.8), so the CP-transformation for the unpolarized cross-section is reduced to the interchange
of the masses in the resulting formula5. Therefore, for equal-mass fermions in the final state (i = j) the unpolarized
cross section is always P-, C- and CP-even6. In contrast, if the chargino species are different, CP-violating terms can
arise even in the unpolarized cross-section. That is the effect we will consider here, so unless otherwise stated the
final-state chargino masses are taken non-equal.

Calculations show that the tree-level cross section (polarized and unpolarized) of the process (2.1) is CP even [7],
but, as we shall see, CP-odd terms do arise in the one-loop contributions. Therefore, a natural experimental observable
to consider is the ratio

dσodd
0

dσ0
, (2.10)

where dσodd is the CP-odd part of the corresponding cross-section:

dσodd
0 =

1

2

[

dσ0 − dσCP
0

]

, dσCP
0 ≡ dσ0

∣

∣

∣

mi↔mj

. (2.11)

As just mentioned, the CP violation first enters at one loop, thus, to estimate the effect one should caculate dσodd
0

at the one-loop level. On the other hand, in most of the kinematical regions far from any resonance, one can expect
(see, e.g, [20, 21]) that the tree-level gives a reasonable approximation to dσ0 in the denominator of Eq. (2.10). So,
we will deal only with the ratio

dσodd
0

∣

∣

1 loop

dσ0|tree
. (2.12)

In the following Sections we discuss the diagrams that (may) contribute to this observable and provide some sample
calculations.

5 Of course, the coupling constants at vertices with charginos should be considered as functions of the chargino masses, or, better, the
mass indices i, j.

6 The famous forward-backward asymmetry term in the unpolarized cross-section of, say, e+e− → µ+µ− scattering, which is often referred
to as parity violating, in fact only indicates the presence of parity violating term in the interaction, the unpolarized cross-section itself
being, of course, P-even.
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due to the helicity projectors [17] composed of the Dirac spinors in the amplitude:

u(p, λ)u(p, λ) =
1

2
(1 + γ5 #P )(#p + m),

v(p, λ)v(p, λ) =
1

2
(1 + γ5 #P )(#p − m), (2.9)

while the amplitude contains only one Dirac spinor for each external fermion.
Consider the unpolarized part. Poincaré invariance forces it to depend only on masses mi, mj and on two indepen-
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As just mentioned, the CP violation first enters at one loop, thus, to estimate the effect one should caculate dσodd
0

at the one-loop level. On the other hand, in most of the kinematical regions far from any resonance, one can expect
(see, e.g, [20, 21]) that the tree-level gives a reasonable approximation to dσ0 in the denominator of Eq. (2.10). So,
we will deal only with the ratio
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In the following Sections we discuss the diagrams that (may) contribute to this observable and provide some sample
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III. DIAGRAMS

The MSSM spectrum and Lagrangian are reviewed by many authors (e. g. [1, 2]), we use the Feynman rule collections
of [22, 23]. Following the latter article, we work in ’t Hooft–Feynman gauge [24, 25], though for more involved loop
calculations other gauge choices may be preferable [11, 26]. When drawing diagrams, we found it convenient to indicate
sparticles by double lines ( for spin 0 and for spin 1/2). Due to R-parity conservation,7

the total number of such lines attached to each vertex should be even.
The model involves Majorana fermions (neutralino), which leads to certain subtleties with particle-antiparticle

identification [28, 29]. Following [29], we do not indicate the (double) fermion line direction for neutralino and choose
a convenient fermion flow for each diagram. For diagrams with fermion line “clashing” this procedure also helps to
avoid extra C-conjugation matrices in Dirac traces.

A. Tree diagrams

We need the tree-level cross section to normalize the observable (2.12). The graphs contributing to the tree
amplitude Mtree are drawn8 in Fig. 1. They are: s-channel Higgs (and the unphysical Goldstone), photon and Z
exchanges, and t-channel sneutrino exchange.

a. b.

c. d.

FIG. 1: Tree-level diagrams: superpartners of ordinary particles are pictured by double lines.

The Higgs (Goldstone) exchanges can be dropped since their couplings are proportional to me, while γ exchange is
absent since the final-state charginos have different masses and there is no non-diagonal coupling with the photon in
the MSSM (this is a requirement of gauge invariance and renormalizability). Finally, to make sample loop calculations
simplier, we assume that all sleptons are heavy and, hence, only the Z-exchange contributes at tree level.

The differential cross section (in the c.m. system) is

dσ

dΩ
=

β

64π2s
|M|2 , β ≡

|pout|
|pin|

, (3.1)

and the direct calculation for unpolarized Z-exchange amplitude gives (cf. [7]):

|MZ, tree|2

= χ2
(

(g2
V + g2

A)
{

|GV |2[A− 2(mi − mj)
2/s]

+|GA|2[A− 2(mi + mj)
2/s]

}

7 Recently the R-parity non-conserving extensions of the MSSM started to attract attention (see e.g. [27]), however here we do not
consider these cases.

8 Diagrams are drawn by JaxoDraw tools [30].

Assume heavy 
sneutralino

Ignore 
coupling

Vanish 
for i=j



Tree level

4

III. DIAGRAMS

The MSSM spectrum and Lagrangian are reviewed by many authors (e. g. [1, 2]), we use the Feynman rule collections
of [22, 23]. Following the latter article, we work in ’t Hooft–Feynman gauge [24, 25], though for more involved loop
calculations other gauge choices may be preferable [11, 26]. When drawing diagrams, we found it convenient to indicate
sparticles by double lines ( for spin 0 and for spin 1/2). Due to R-parity conservation,7

the total number of such lines attached to each vertex should be even.
The model involves Majorana fermions (neutralino), which leads to certain subtleties with particle-antiparticle

identification [28, 29]. Following [29], we do not indicate the (double) fermion line direction for neutralino and choose
a convenient fermion flow for each diagram. For diagrams with fermion line “clashing” this procedure also helps to
avoid extra C-conjugation matrices in Dirac traces.

A. Tree diagrams

We need the tree-level cross section to normalize the observable (2.12). The graphs contributing to the tree
amplitude Mtree are drawn8 in Fig. 1. They are: s-channel Higgs (and the unphysical Goldstone), photon and Z
exchanges, and t-channel sneutrino exchange.

a. b.

c. d.

FIG. 1: Tree-level diagrams: superpartners of ordinary particles are pictured by double lines.

The Higgs (Goldstone) exchanges can be dropped since their couplings are proportional to me, while γ exchange is
absent since the final-state charginos have different masses and there is no non-diagonal coupling with the photon in
the MSSM (this is a requirement of gauge invariance and renormalizability). Finally, to make sample loop calculations
simplier, we assume that all sleptons are heavy and, hence, only the Z-exchange contributes at tree level.

The differential cross section (in the c.m. system) is

dσ

dΩ
=

β

64π2s
|M|2 , β ≡

|pout|
|pin|

, (3.1)

and the direct calculation for unpolarized Z-exchange amplitude gives (cf. [7]):

|MZ, tree|2

= χ2
(

(g2
V + g2

A)
{

|GV |2[A− 2(mi − mj)
2/s]

+|GA|2[A− 2(mi + mj)
2/s]

}

7 Recently the R-parity non-conserving extensions of the MSSM started to attract attention (see e.g. [27]), however here we do not
consider these cases.

8 Diagrams are drawn by JaxoDraw tools [30].

4

III. DIAGRAMS

The MSSM spectrum and Lagrangian are reviewed by many authors (e. g. [1, 2]), we use the Feynman rule collections
of [22, 23]. Following the latter article, we work in ’t Hooft–Feynman gauge [24, 25], though for more involved loop
calculations other gauge choices may be preferable [11, 26]. When drawing diagrams, we found it convenient to indicate
sparticles by double lines ( for spin 0 and for spin 1/2). Due to R-parity conservation,7

the total number of such lines attached to each vertex should be even.
The model involves Majorana fermions (neutralino), which leads to certain subtleties with particle-antiparticle

identification [28, 29]. Following [29], we do not indicate the (double) fermion line direction for neutralino and choose
a convenient fermion flow for each diagram. For diagrams with fermion line “clashing” this procedure also helps to
avoid extra C-conjugation matrices in Dirac traces.

A. Tree diagrams

We need the tree-level cross section to normalize the observable (2.12). The graphs contributing to the tree
amplitude Mtree are drawn8 in Fig. 1. They are: s-channel Higgs (and the unphysical Goldstone), photon and Z
exchanges, and t-channel sneutrino exchange.

a. b.

c. d.

FIG. 1: Tree-level diagrams: superpartners of ordinary particles are pictured by double lines.

The Higgs (Goldstone) exchanges can be dropped since their couplings are proportional to me, while γ exchange is
absent since the final-state charginos have different masses and there is no non-diagonal coupling with the photon in
the MSSM (this is a requirement of gauge invariance and renormalizability). Finally, to make sample loop calculations
simplier, we assume that all sleptons are heavy and, hence, only the Z-exchange contributes at tree level.

The differential cross section (in the c.m. system) is

dσ

dΩ
=

β

64π2s
|M|2 , β ≡

|pout|
|pin|

, (3.1)

and the direct calculation for unpolarized Z-exchange amplitude gives (cf. [7]):

|MZ, tree|2

= χ2
(

(g2
V + g2

A)
{

|GV |2[A− 2(mi − mj)
2/s]

+|GA|2[A− 2(mi + mj)
2/s]

}

7 Recently the R-parity non-conserving extensions of the MSSM started to attract attention (see e.g. [27]), however here we do not
consider these cases.

8 Diagrams are drawn by JaxoDraw tools [30].

5

−4gV gA(G∗
V GA + GV G∗

A)β cos θ
)

, (3.2)

where s = (p1 + p2)2, mi, mj are the chargino massess, θ is the scattering angle, and

χ =

(

g

4 cos θW

)2 s

s − M2
Z

, A = 2 − β2 sin2 θ.

The Zee (reduced) couplings are: gV = 1 − 4 sin2 θW , gA = −1 (cf. Eq. (A6)), while the couplings GV ≡ GV j,i and
GA ≡ GA j,i are defined by Eq. (A8).

According to the footnote in Sec. II and Eq. (2.8), under the CP-transformation

CP : GV (A) j,i ↔ GV (A) i,j , mi ↔ mj . (3.3)

On the other hand, the hermiticity of the Lagrangian enforces the relation

GV (A) j,i = G∗
V (A) i,j , (3.4)

so Eq. (3.2) is clearly CP-even.
If sneutrino exchange is not neglected, the cross section consist of the squared graphs terms (Fig. 1 c, d) and an

interference term. Each of them turns out to be CP-even [7].

B. Loops

The complete list of one-loop (prototype) graphs contributing to the cross section can be found in [21]. The fact
that the tree-level cross section is CP even makes it evident that many of the dσ0 one-loop corrections cancel in dσodd

0
(2.11), the numerator of (2.12). Indeed, the external wave function renormalization is multiplicative, the propagator
corrections result just in a propagator mass shift,9 therefore we do not need to calculate the two-point functions and,
hence, neither Faddeev–Popov ghosts nor coloured particles will be involved. In other words, there are only two types
of one-loop corrections that may contribute to dσodd

0 : box diagrams and the tree diagrams from Fig. 1 with a triangle
loop instead of one of the vertices. Before we take a closer look at the box diagrams (we do not compute the triangle
vertex corrections here), it is necessary to say a couple of words about ultraviolet and infrared behaviour of dσodd

0 at
the one-loop order.

As mentioned in the Introduction, dσodd
0 must be UV finite, since it vanishes at tree level: otherwise the counterterms

required would mirror the tree level CP-odd contribution. So, no infinite (UV-divergent) counterterms are required.
In fact, one can also see that any finite part of counterterm just result in corrections to the tree level vertices in Fig. 1.
In particular, in Eq. (3.2) only gV,A and GV,A may get modified, and, since Eq. (3.4) should always hold, the result
will still be CP-even and no contributions to dσodd

0 will arise. One can easily check that the unpolarized cross section
with sneutrino exchange will also be unaffected by counterterms. This relates also to finite counterterms which may
be required to restore the symmetries violated by regularization10 in the so-called algebraic renormalization approach
[11]. So, at least for the unpolarized cross section, we should not worry about the renormalization scheme (we assume
that the on-shell normalization conditions are used) and the standard dimensional regularization will be adequate at
the one loop order: all divergent pieces must cancel in dσodd

0 .
The situation with infrared (IR) finiteness is slightly more complicated: there are many loops with massless particles

inside. However, according to [11], all the IR singularities that appear at any loop order in our amplitude are of the
standard type, namely, they arise due to the soft photons and cancel when real bremsstrahlung is accounted for. On
the other hand, the bremsstrahlung photon emission from the tree diagram results in just an overall factor for the
corresponding amplitude. Since the tree amplitude is CP-even, we conclude that dσodd

0 is free of IR singularities.
Each possible box diagram turns out to be UV-finite just by power counting. Since we assume heavy sleptons, any

box with a slepton line can be neglected. The only box diagrams that may contribute to Eq. (2.12) in this limit are

9 It is a bit more tricky if one sticks to precise 1 loop order and does not allow for the Dyson resummation in the propagators. Then
each of the tree graphs (Fig. 1) acquires different functional (CP-even) multiplier and the structure of the tree-level result [7] ensures
that CP-odd terms cannot arise. We do not demonstrate it here as we discard the sneutrino exchange graph, and, therefore, will get
multiplicative correction anyway.

10 There are, however, no such simple arguments for polarized amplitudes, as one of the potential CP-odd terms in this case is cancelled
due to the tree level SUSY relation between chargino and sneutrino couplings [7]. The symmetry-restoring counterterms may, in general,
violate this relation and therefore can give an additional CP-odd term. We shall not discuss it here.
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Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

2

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

2

First index corresponds to annihilated positive particle



e+e− → χ̃+
i χ̃−

j

Mχ =

(

M2

√
2mW sinβ√

2mW cos β µ

)

M2 real

µ = |µ|eiφ

1

Recall origin of         :e+e− → χ̃+
i χ̃−

j

Mχ =

(

M2

√
2mW sinβ√

2mW cos β µ

)

M2 real

µ = |µ|eiφ

1

Choose

Notation:

e+e− → χ̃+
i χ̃−

j

Mχ =

(

M2

√
2mW sinβ√

2mW cos β µ

)

M2 real

µ = |µ|eiφ

e+e− →























χ̃+
2 χ̃−

2

χ̃+
2 χ̃−

1

χ̃+
1 χ̃−

2

χ̃+
1 χ̃−

1

σ(e+e− → χ̃+
2 χ̃−

1 ) $= σ(e+e− → χ̃+
1 χ̃−

2 ) µ

p1, p2, k1, k2 P−, P+

i = 1, 2, j = 1, 2

U∗MχV
† =

(

mχ1
0

0 mχ2

)

mχ1
< mχ2

Mχ

1

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V
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drawn in Fig. 2. Those are the only graphs whose contribution to dσodd
0 we shall evaluate numerically. Analytical

results for the coefficients of the box type Passarino–Veltman-like functions presented in the next section ensure that
the CP-odd contribution from box diagrams can not be completely cancelled by graphs with triangle loop corrections
and, hence, the CP-violation is indeed present in the unpolarized cross section.

IV. NUMERICAL ESTIMATES

Loop amplitudes are conveniently evaluated in terms of Passarino–Veltman functions [31]. In [21] the cross section
of the process (1.1) was parametrized in terms of those functions and calculated in various parameter points. However,
the latter results were obtained assuming a CP-invariant theory (real couplings) and (to make the results compact)
the reduction to scalar Passarino–Veltman functions was not done. Since only the scalar functions can be considered
independent (differ from each other by singularity pattern) we performed this reduction in our formulae.

FIG. 2: Box diagrams without slepton lines: all chargino and neutralino mass eigenstates contribute.

At one loop order the cross section is defined by Eq. (3.1) with
∣

∣M2
∣

∣

1 loop
= M∗

treeM1 loop + MtreeM∗
1 loop ,

and, since we assume heavy sleptons, the tree amplitude Mtree contains only the s-channel Z-exchange graph of Fig. 1.
Direct calculations [32] show that the CP-odd part of

∣

∣M2
∣

∣

1 loop
accquire four-point (“box”) integral contributions.

In particular, for the Z-exchange (uncrossed and crossed) box diagrams of Fig. 2, after reduction to scalar integrals
one obtains (the subscript “D” refers to terms proportional to genuine box diagram functions, as defined below):

∣

∣M2
∣

∣

CP−odd,
Z−box, D

=
1

(2π)4
2Re

[ ig6mimj

(4 cos θW )6
(GA ijGV ji − GA jiGV ij)

×
{

gA(g2
A + 3g2

V )m2
Z(GV iiIi;ji + GV jjIj;ji)

+ gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2t)GA iiIi;ji

+ (2m2
j − m2

Z − 2t)GA jjIj;ji

]

+ gA(g2
A + 3g2

V )m2
Z(GV iiI

cr
i;ji + GV jjI

cr
j;ji)

− gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2u)GA iiI
cr
i;ji

+ (2m2
j − m2

Z − 2u)GA jjI
cr
j;ji

]}

]

. (4.1)

Here, as above, mi, mj are the chargino masses (i, j = 1, 2), and all couplings are defined in Appendix A. From the
tree diagram there is a coupling gV or gA at the Zee vertex, and a GV ji or GA ji at the Zχiχj vertex, whereas the
box diagrams contribute two Zee couplings (g2

V , g2
A or gV gA), and two Zχχ vertices, one of which will be diagonal

in mass index (GV ii, GA ii, GV jj or GA jj), and one will be non-diagonal (GV ij , GA ij , GV ji or GA ji). The two
non-diagonal Zχχ couplings factor out as the combination

GA ijGV ji − GA jiGV ij = 2i ImGA ijGV ji. (4.2)

This quantity is shown in Fig. 3, for the set of parameters:

|µ| = 300 GeV, M2 = 200 GeV (4.3)

Box diagrams

One          vertex is diagonal, the other is not

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V

Zχχ

2
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∣

∣M2
∣

∣

CP−odd,
Z−box, D

=
1

(2π)4
2Re

[ ig6mimj

(4 cos θW )6
(GA ijGV ji − GA jiGV ij)

×
{

gA(g2
A + 3g2

V )m2
Z(GV iiIi;ji + GV jjIj;ji)

+ gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2t)GA iiIi;ji

+ (2m2
j − m2

Z − 2t)GA jjIj;ji

]

+ gA(g2
A + 3g2

V )m2
Z(GV iiI

cr
i;ji + GV jjI

cr
j;ji)

− gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2u)GA iiI
cr
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+ (2m2
j − m2

Z − 2u)GA jjI
cr
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]}

]

. (4.1)

Here, as above, mi, mj are the chargino masses (i, j = 1, 2), and all couplings are defined in Appendix A. From the
tree diagram there is a coupling gV or gA at the Zee vertex, and a GV ji or GA ji at the Zχiχj vertex, whereas the
box diagrams contribute two Zee couplings (g2

V , g2
A or gV gA), and two Zχχ vertices, one of which will be diagonal

in mass index (GV ii, GA ii, GV jj or GA jj), and one will be non-diagonal (GV ij , GA ij , GV ji or GA ji). The two
non-diagonal Zχχ couplings factor out as the combination

GA ijGV ji − GA jiGV ij = 2i ImGA ijGV ji. (4.2)

This quantity is shown in Fig. 3, for the set of parameters:

|µ| = 300 GeV, M2 = 200 GeV (4.3)

Similar to ZZ boxes, but now intermediate neutralino

Other box diagrams vanish in heavy sneutrino limit



s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V

Zχχ

Wχχ0:

L =
g

2

{

Ψ̄χj
γρ(V + γ5A)Ψχ0

a
Wρ

+ Ψ̄χ0
a
γρ(V∗ + γ5A∗)Ψχj

W †
ρ

}

V = −Za2U
†
1j − Z†

2aVj1 −
Za3U

†
2j√

2
+

Z†
4aVj2√

2
,

A = −Za2U
†
1j + Z†

2aVj1 −
Za3U

†
2j√

2
−

Z†
4aVj2√

2
.

2

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V

Zχχ

Wχχ0:

L =
g

2

{

Ψ̄χj
γρ(V + γ5A)Ψχ0

a
Wρ

+ Ψ̄χ0
a
γρ(V∗ + γ5A∗)Ψχj

W †
ρ

}

V = −Za2U
†
1j − Z†

2aVj1 −
Za3U

†
2j√

2
+

Z†
4aVj2√

2
,

A = −Za2U
†
1j + Z†

2aVj1 −
Za3U

†
2j√

2
−

Z†
4aVj2√

2
.

2

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V

Zχχ

Wχχ0:

L =
g

2

{

Ψ̄χj
γρ(V + γ5A)Ψχ0

a
Wρ

+ Ψ̄χ0
a
γρ(V∗ + γ5A∗)Ψχj

W †
ρ

}

V = −Za2U
†
1j − Z†

2aVj1 −
Za3U

†
2j√

2
+

Z†
4aVj2√

2
,

A = −Za2U
†
1j + Z†

2aVj1 −
Za3U

†
2j√

2
−

Z†
4aVj2√

2
.

2diagonalize neutralino mass matrix



Mχ0 =









M1 0 −mZ cos β sin θW mZ sinβ sin θW

0 M2 mZ cos β cos θW −mZ sin β cos θW

−mZ cos β sin θW mZ cos β cos θW 0 −µ

mZ sin β sin θW −mZ sinβ cos θW −µ 0









Z∗Mχ0Z† = diag{mχ0
1
, mχ0

2
, mχ0

2
, mχ0

3
}

∣

∣M2
∣

∣

CP−odd,
Z−box, D

=
1

(2π)4
2Re

[ ig6mimj

(4 cos θW )6
(GA ijGV ji − GA jiGV ij)

×
{

gA(g2
A + 3g2

V )m2
Z(GV iiIi;ji + GV jjIj;ji)

+ gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2t)GA iiIi;ji

+ (2m2
j − m2

Z − 2t)GA jjIj;ji

]

+ gA(g2
A + 3g2

V )m2
Z(GV iiI

cr
i;ji + GV jjI

cr
j;ji)

− gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2u)GA iiI
cr
i;ji

+ (2m2
j − m2

Z − 2u)GA jjI
cr
j;ji

]}

]

GA ijGV ji − GA jiGV ij = 2i Im GA ijGV ji

Ik;ij ≡ D(p1, p2,−k2,−k1, mZ, 0, mZ, mχk
)

Icr
k;ij ≡ D(p1, p2,−k1,−k2, mZ, 0, mZ, mχk

)

3

Mχ0 =









M1 0 −mZ cos β sin θW mZ sinβ sin θW

0 M2 mZ cos β cos θW −mZ sin β cos θW

−mZ cos β sin θW mZ cos β cos θW 0 −µ

mZ sin β sin θW −mZ sinβ cos θW −µ 0









Z∗Mχ0Z† = diag{mχ0
1
, mχ0

2
, mχ0

2
, mχ0

3
}

∣

∣M2
∣

∣

CP−odd,
Z−box, D

=
1

(2π)4
2Re

[ ig6mimj

(4 cos θW )6
(GA ijGV ji − GA jiGV ij)

×
{

gA(g2
A + 3g2

V )m2
Z(GV iiIi;ji + GV jjIj;ji)

+ gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2t)GA iiIi;ji

+ (2m2
j − m2

Z − 2t)GA jjIj;ji

]

+ gA(g2
A + 3g2

V )m2
Z(GV iiI

cr
i;ji + GV jjI

cr
j;ji)

− gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2u)GA iiI
cr
i;ji

+ (2m2
j − m2

Z − 2u)GA jjI
cr
j;ji

]}

]

GA ijGV ji − GA jiGV ij = 2i Im GA ijGV ji

Ik;ij ≡ D(p1, p2,−k2,−k1, mZ, 0, mZ, mχk
)

Icr
k;ij ≡ D(p1, p2,−k1,−k2, mZ, 0, mZ, mχk

)

3

taken complex

could also be complex

coupling depends on two phases, 
phase of μ and phase of M1 

take M1 real

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V

Zχχ

Wχχ0:
W±χ∓χ0

L =
g

2

{

Ψ̄χj
γρ(V + γ5A)Ψχ0

a
Wρ

+ Ψ̄χ0
a
γρ(V∗ + γ5A∗)Ψχj

W †
ρ

}

V = −Za2U
†
1j − Z†

2aVj1 −
Za3U

†
2j√

2
+

Z†
4aVj2√

2
,

A = −Za2U
†
1j + Z†

2aVj1 −
Za3U

†
2j√

2
−

Z†
4aVj2√

2
.

2



Figure 6.1: Electron-electron vertex corrections (3eed.eps, 3eev.eps, 3eedr.eps, 3eevr.eps)

Figure 6.2: Chargino-chargino vertex corrections (3ccd.eps, 3ccdr.eps, 3ccv.eps, 3ccvr.eps)

13

Triangle diagrams (not calculated)

> 8 diagrams
\times choice of chargino, neutralino, selectron



Figure 6.1: Electron-electron vertex corrections (3eed.eps, 3eev.eps, 3eedr.eps, 3eevr.eps)

Figure 6.2: Chargino-chargino vertex corrections (3ccd.eps, 3ccdr.eps, 3ccv.eps, 3ccvr.eps)

13

Triangle diagrams (not calculated)

18 diagrams
\times choice of chargino, neutralino, selectron



Figure 6.3: Electron-chargino vertex corrections (3ecd.eps, 3ecdr.eps, 3ech.eps, 3echr.eps)

14

Triangle diagrams (not calculated)

9 diagrams
\times choice of chargino, neutralino, selectron, Higgs

Heavy sneutrino limit gives no simplification



Box diagrams:

• ϒϒ give no contribution

• ϒZ cancel (D-integral part)

• ZZ “simple”

• WW complicated



Box diagram results:

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V

Zχχ

∣

∣M2
∣

∣

CP−odd,
Z−box, D

=
1

(2π)4
2Re

[ ig6mimj

(4 cos θW )6
(GA ijGV ji − GA jiGV ij)

×
{

gA(g2
A + 3g2

V )m2
Z(GV iiIi;ji + GV jjIj;ji)

+ gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2t)GA iiIi;ji

+ (2m2
j − m2

Z − 2t)GA jjIj;ji

]

+ gA(g2
A + 3g2

V )m2
Z(GV iiI

cr
i;ji + GV jjI

cr
j;ji)

− gV (3g2
A + g2

V )
[

(2m2
i − m2

Z − 2u)GA iiI
cr
i;ji

+ (2m2
j − m2

Z − 2u)GA jjI
cr
j;ji

]}

]

2
W box results much more complicated

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
1j − Vj1V

†
1k

]}

Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V

Zχχ

2



GA ijGV ji − GA jiGV ij = 2i Im GA ijGV ji

Ik;ij ≡ D(p1, p2,−k2,−k1, mZ, 0, mZ, mχk
)

Icr
k;ij ≡ D(p1, p2,−k1,−k2, mZ, 0, mZ, mχk

)

D(l1, l2, l3, l4, m1, m2, m3, m4)

≡
∫

d4q
{

(q2 − m2
1)[(q + l1)

2 − m2
2]

× [(q + l1 + l2)
2 − m2

3]

× [(q + l1 + l2 + l3)
2 − m2

4]
}−1

3

GA ijGV ji − GA jiGV ij = 2i Im GA ijGV ji

Ik;ij ≡ D(p1, p2,−k2,−k1, mZ, 0, mZ, mχk
)

Icr
k;ij ≡ D(p1, p2,−k1,−k2, mZ, 0, mZ, mχk

)

D(l1, l2, l3, l4, m1, m2, m3, m4)

≡
∫

d4q
{

(q2 − m2
1)[(q + l1)

2 − m2
2]

× [(q + l1 + l2)
2 − m2

3]

× [(q + l1 + l2 + l3)
2 − m2

4]
}−1

3

Loop (box) integrals:

‘t Hooft, Veltman; Passarino, Veltman; LoopTools



One nondiagonal            coupling at tree level,

Box diagram results, cont:

s and t = (p1 − k1)
2 = (p2 − k2)

2

Zχχ:

L =
g

4 cos θW
Ψ̄χj

γρ
{[

2δkj cos 2θW + Uk1U
†
1j + Vj1V

†
1k

]

+ γ5
[

Uk1U
†
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†
1k
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Ψχk
Zρ

≡
g

4 cos θW
Ψ̄χj

γρ
{

GV k,j + γ5GA k,j

}

Ψχk
Zρ

U V

Zχχ

2

one at loop level

They combine to: GA ijGV ji − GA jiGV ij = 2i Im GA ijGV ji

3
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)

Icr
k;ij ≡ D(p1, p2,−k1,−k2, mZ, 0, mZ, mχk

)
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≡
∫
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1)[(q + l1)

2 − m2
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× [(q + l1 + l2)
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3]
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2 − m2

4]
}−1

|µ| = 300 GeV, M2 = 200 GeV
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Box diagrams only (polar angle π/2):

Effect decreases with increasing energy
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Smooth variation with polar angle:

Angles: 
“0” means positive chargino along electron direction
(asymmetry between heavier and lighter positive chargino)
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D(l1, l2, l3, l4, m1, m2, m3, m4)

≡
∫

d4q
{

(q2 − m2
1)[(q + l1)

2 − m2
2]

× [(q + l1 + l2)
2 − m2

3]

× [(q + l1 + l2 + l3)
2 − m2

4]
}−1

|µ| = 300 GeV, M2 = 200 GeV

ACP =
Γ(χ̃+

i → χ̃0
1W

+) − Γ(χ̃−
i → χ̃0

1W
−)

Γ(χ̃+
i → χ̃0

1W
+) + Γ(χ̃−

i → χ̃0
1W

−)
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Yang and Du, PRD 67, 055004 (2003)

loop effect



Conclusions

• Non-zero CP-violating asymmetry in 
unpolarized cross sections

• Order of magnitude: 

‣ Possibly 1% (hard to measure)

• Only calculated in part 

‣ Triangle diagrams missing (lots of them)


