

Polarized Geant4 – Applications at the ILC

Andreas Schälicke

DESY, Zeuthen

ILC/LCWS07, Hamburg, 1st June 2007

Outline

Motivation

Use-cases

Implementation

Physics picture The new Geant4 polarisation library

Verification

Comparison with other Codes

Applications

The E166 experiment ILC positron source LEPOL

Summary

Summary & Outlook

Use-cases

1. Polarisation-Transfer

e.g. a circularly polarised photon beam hits a thin target: What is the degree of polarisation of

- the outgoing photon beam
- the produced electron/positrons

needed for Target studies for the ILC positron source optimisation and especially the E166 experiment

2. Polarimetry

if a polarised beam hits a polarised target,

- asymmetries in total cross sections (example E166 Compton transmission polarimeter), and
- asymmetries in distribution (low–energy Polarimeter for the ILC)

can be observed.

Use-cases

Interactions of polarised Electrons, Positrons and Photons

- main focus on logitudinal (or circular) polarisation (extension to transverse polarisation is forseen)
- envisaged energy domain is 1MeV ... 10 MeV (E166 experiment, positron source) or up to 5GeV (ILC low-energy polarimeter)

Polarisation needed in

- Pair-production
- Bremsstrahlung
- Compton scattering
- Møller/Bhabha scattering
- Positron annihilation into two photons

Good news: Everything described by QED.

Physics picture

Base Stokes vectors $\boldsymbol{\xi}_i$

- representations of arbitrary photon/lepton polarisation states
- \blacktriangleright decomposition of Spin density matrix ρ

$$\boldsymbol{\xi} = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} \qquad \qquad \rho = \frac{1}{2}(1 + \boldsymbol{\xi}\boldsymbol{\sigma})$$

Cross section is linear function of polarisation

$$\frac{d\sigma(\xi^{(1)},\xi^{(2)},\xi^{(3)},\xi^{(4)})}{d\Omega} = \Phi(\xi^{(1)},\xi^{(2)}) + \boldsymbol{A}(\xi^{(1)},\xi^{(2)}) \cdot \boldsymbol{\xi}^{(3)} + \boldsymbol{B}(\xi^{(1)},\xi^{(2)}) \cdot \boldsymbol{\xi}^{(4)} + \boldsymbol{\xi}^{(3)T} M(\xi^{(1)},\xi^{(2)}) \boldsymbol{\xi}^{(4)}$$

- describes asymmetries and
- polarisation transfer
- final state correlation $M(\xi^{(1)},\xi^{(2)})$ is neglected

G4VPolarizedCrossSe G4VPularizedCrossSection

New Geant4 Polarisation Library

provides (almost all) polarised QED processes

Andreas Schälicke (DESY, Zeuthen)

LCWS07 Hamburg 6 / 16

3

(日) (周) (三) (三)

Comparison with Whizard/O'mega

- arbitrary initial polarisation
- final state helicity
- ▶ simple $2 \rightarrow 2^a$ processes
 - Compton
 - Møller/Bhabha
 - ▶ e⁺e⁻−annihilation

Checks:

- Polarisation transfer
- Asymmetries

Missing:

 Interactions with nuclei e.g. Pair-Production

^aWhizard/O'mega is not restricted to 2 final state particles

< 4 → <

Comparison with EGS

EGS:

- polarisation implementation by K.Föttmann
- describes polarisation transfer
- no depolarisation via ionisation
- no target polarisation

Checks:

- good aggreement for polarisation transfer to high energetic positrons
- context of Compton based source (O.Dadoun)

For

'e⁺Sz: EG

- utilising 50 GeV electron final focus test beam (FFTB) at SLAC
- photons are converted to positrons in thin W-target
- measurement of photon and positron polarisation by Compton transmission polarimetry

Target – Expected positron polarisation

- input photon energy & polarisation generated by helical undulator
- conversion into electron-positron pairs in a thin W-target
- polarisation transfer to high energetic leptons
- simulation: expected energies and polarisation of produced positrons

Polarimeter – Simulation of Analysing Power

- reconversion of positrons into photons via Bremsstrahlung and annihilation
- transmission of photons through magnetised iron (magnetisation parallel or anti-parallel)
- measurement of transmission in a 9-crystal Csl calorimeter
- polarisation dependence of Compton cross section results in an asymmetry
- simulation gives analysing power (conversion factor between measured asymmetry and polarisation of positrons)

N = 10⁴ E_{e+} = 7 MeV P_{e+} = 100%

Andreas Schälicke (DESY, Zeuthen)

Polarized Geant4 for the ILC

LCWS07 Hamburg

11 / 16

- simulation gives positron polarisation and yield
- colimation of photon beam gives higher polarisation
- simple acceptance model: 5-25 MeV, 20°
- optimisation of polarisation vs. yield

- simulation gives positron polarisation and yield
- colimation of photon beam gives higher polarisation
- simple acceptance model: 5-25 MeV, 20°
- optimisation of polarisation vs. yield

- simulation gives positron polarisation and yield
- colimation of photon beam gives higher polarisation
- simple acceptance model: 5-25 MeV, 20°
- optimisation of polarisation vs. yield

- simulation gives positron polarisation and yield
- colimation of photon beam gives higher polarisation
- simple acceptance model: 5-25 MeV, 20°
- optimisation of polarisation vs. yield

electron distribution

Bhabha Polarimeter

- ▶ e^+ beam, $E \approx 200$ MeV
- magnetised iron foil 30 μ m
- simulation gives distribution and analysing power for e⁺, e⁻ and γ

Official Geant4 release

first appeared in version 8.2

December 15th 2006

available at

http://geant4.web.cern.ch/

includes

- polarised QED processes
- documentation available in Geant4 Physics Reference Manual
- usage illustrated in a simple example examples/extended/polarisation/Pol01/

11 Pe	olarized	Electron/Positron/Gamma Incident 166	õ
11	1.1 Introd	uction	7
	11.1.1	Stokes vector	7
	11.1.2	Transfer matrix	9
	11.1.3	Coordinate transformations	0
	11.1.4	Polarized beam and material	1
	11.1.5	Status of this document	3
11	1.2 Ionizat	ion	4
	11.2.1	Method	4
	11.2.2	Total cross section and mean free path	4
	11.2.3	Sampling the final state	7
	11.2.4	Status of this document	0
11	1.3 Positro	on - Electron Annihilation	1
	11.3.1	Method	1
	11.3.2	Total cross section and mean free path	1
	11.3.3	Sampling the final state	3
	11.3.4	Annihilation at Rest	5
	11.3.5	Status of this document	5
11	1.4 Polariz	ed Compton scattering	7
	11.4.1	Method	7
	11.4.2	Total cross section and mean free path	7
	11.4.3	Sampling the final state	8
	11.4.4	Status of this document	1
11	1.5 Polariz	ed Bremsstrahlung for electron and positron 195	2
	11.5.1	Method	2
	11.5.2	Polarization in gamma conversion and bremsstrahlung 195	2
	11.5.3	Polarization transfer to the photon	3
	11.5.4	Polarization transfer to the lepton	4
	11.5.5	Status of this document	5
11	1.6 Polariz	ed Gamma conversion into an electron–positron pair 19	7
1	11.6.1	Method	7
	11.6.2	Polarization transfer	7
	11.6.3	Status of this document	8

Further plans

continue the validation

utilising complementary computer codes

- (e.g. by V.Gharibyan, V.Strakhovenko, or A.Mikhailichenko)
- add new polarised processes (Photo-Electric effect in preparation)
- full implementation of transverse polarisation validation with existing implementations in Geant4
- work on efficiency optimisation
- improve software framework (in cooparation with M.G.Pia)

Summary

- New EM polarisation library
- fits requirements for optimisation of ILC polarised positron source
- general scheme based on Stokes vectors
- focused on logitudinal and circular polarisation (in the moment)
- describes polarisation transfer & asymmetry effects
- validated against other software tools and E166 data
- included in official Geant4 release since version 8.2

G4 polarisation group:

R. Dollan, K. Laihem, T. Lohse, S. Riemann, A.S., A. Stahl, P. Starovoitov in fruitful cooparation with V. Ivantchenko and M. Maire