

Status Report on DEPFET Active Pixel Sensors for the ILC VTX

Laci Andricek

for the DEPFET Collaboration (<u>www.depfet.org</u>)

The DEPFET ILC VTX Project

Outline of this talk

- -: New Single Pixel Results
- -: Radiation tolerance
- -: New Switcher, new r/o chip DCD
- -: News from thinning
- -: Simulation results

Lars Reuen in the next talk

- -: System Tests
- -: Beam Test Results

Single Pixel Test Setup

- Spectroscopic measurements
- Noise evaluation
- internal amplification (g_a)
- Leakage current

... before and after irradiation!

mpi halbleiterlabor

As long as noise is dominated by r/o chip \rightarrow S/N linear with g_a

PXD4 has L=6µm, some matrices in PXD5 have now L=4µm \rightarrow expect factor 2 better S/N

High readout speed \rightarrow high bandwidth \rightarrow short shaping times

$$ENC = \sqrt{\alpha \frac{8kTg_m}{3g_q^2} \frac{1}{\tau} + 2\pi a_f C_{tot}^2 + qI_{Leak}\tau}$$

Measurements of a single pixel with an external high bandwidth amplifier

Intrinsic DEPFET noise sufficiently low for high speed operation at ILC

halbleiterlabor

Irradiations - Overview

- -: New irradiations (protons and neutrons) done by Devis Contarato et al., LBNL
- -: Single pixel structures with 6 and 7 μm gate length
- -: Using the single-pixel setup, with current based readout
- -: Look for degradation in:
 - Electric characteristics (V_{th} shifts, g_m and g_q)
 - Leakage current (NIEL)
 - Spectroscopic performance
 - noise spectrum (1/f noise)

	PXD4-10 MO2	PXD4-5 M05	PXD4-2 J14
Туре	Protons, 30MeV	Neutrons, 1-20MeV	Gammas - ⁶⁰ Co
Fluence / Dose	1.2·10 ¹² p/cm ²	1.6·10 ¹¹ n/cm ²	913kRad
1MeV n equivalent	3·10 ¹² n _{eq} /cm ²	2.4 [.] 10 ¹¹ n _{eq} /cm ²	n/a

LBNL Cyclotron

GSF Munich

halbleiterlabo

irradiation	TID / NIEL fluence	ΔV_{th}	9 _m	I_{Leak} in int. gate at RT ^(*)
gamma 60Co	913 krad / ~ 0	~-4V	unchanged	156 fA
neutron	~ 0 / 2.4x10 ¹¹ n/cm ²	~ 0	unchanged	1.4 pA
proton	283krad / 3x10 ¹² n/cm ²	~-5V	~ -15%	26 pA

(*) 5..22 fA non irrad.

Bulk Leakage Current- Temperature dependence ... almost as expected: exponential decrease by factor 2 every 7 K

• Some dependence on operation voltages \rightarrow other contributions than bulk?

At 0 degC about 10 - 20 e-/µs into internal gate (after 10¹² p/cm²)

■ expected noise contribution for the first layer (50µs int. time): 20-30 e⁻ ENC

Spectroscopic Performance

mpi

- Mostly use 'baseline' linear DEPFET geometry
- Build larger matrices

Long matrices (full ILC drain length) Wide matrices (full Load for Switcher Gate / Clear chips) Production almost done! → June 2007

Try new DEPFET variants:

reduce **clear voltages** (modified implantations, modified geometry) Very **small** pixels (20µm x 20µm)

- Increase internal amplification (g_a)
- Add some bump bonding test structures

- -: Radiation hard (AMS 0.35 mm, layout)
- -: up to 10V swing (-> stacked transistors)
- -: Low power ("0" standby current)
- -: Fast settling (<4ns at 10 pF)
- -: Compact layout (1.24 x 5.8 mm²)
- -: Test chip produced \rightarrow rad. tolerance tested > 600kRad!
- -: Full chip produced and tested

9V distributed over 3 transistors with 3V -> rad hard. technology possible

halbleiterlabor

(Uni Mannheim)

DCD: Drain Current Digitizer

what is new?

Test chip: 6X12 channels (pixels)

submitted (UMC 0.18), April 2007

- -: improved input cascode (regulated) and current memory cells
- -: digital hit processing done with 2nd chip/FPGA
- -: designed for 40 pF load at the input (1^{st} layer ILC VTX)
- -: f/e noise: 34nA@40pF, 17nA@10pF, add 37nA for memory cells \rightarrow 50nA@40pF \rightarrow at 40pF with g_q=500pA/e \rightarrow 100 e- ENC in total
- -: 2 current based ADCs per pixel, 8 bit
- -: layout for bump bonding, rad. hard design

(Uni Mannheim)

halbleiterlabor

PiN Diodes on thin Silicon

full size 1st layer module:

100x13 mm² sensitive area, 50 μm thin, 400 μm frame, no support bars

ightarrow 20 µm deflection due to gravity

halbleiterlabor

Sensitive layer thickness = 50 μ m Pixel size = 25×25 μ m²

	Radius (cm)	Ladders	Length (cm)
1	1.5	8	10.0
2	2.6	8	2 imes 12.5
3	3.8	12	2×12.5
4	4.9	16	2×12.5
5	6.0	20	2×12.5

 \rightarrow LDC ladders with support frames

Material up to first layer : beam pipe (500 µm beryllium)

Spatial resolution for 50 mm thick 25 x 25 mm² pixels: <3.5 mm (r- ϕ), <4.0 mm (z)

Ladislav Andricek, MPI für Physik, HLL

halbleiterlabor

	2006	2007	2008	2009	2010
DEPFET incl. rad. tolerance	PXD5		PXD6	•	
Thinning					
chips/system development	CURO3	DCD1			full size
	SWITCHER3				demonstrator
thin Me./El. Samples					
					•
interconnections on & off module					•
Engineering module/barrels/ discs					•

- ✓ Preparations for the **new DEPFET generation** are in full swing:
 - ✓ New Sensors, larger matrices, with improved gain expected end of June 2007
 - ✓ Steering chip Switcher operational and rad. hard
 - ✓ New r/o chip submitted

Summary

- Radiation tolerance of basic pixel cell proven for fluences far beyond the ones expected at the ILC .
- Thinning technology at the door step to migrate to the production line. Excellent results using a commercial supplier for the engineered SOI wafers.
- ✓ **MC Studies** show the feasibility of the current module concept and pixel size.

It remains a challenging task but we don't see any show stoppers and are on schedule for a thin "full size" demonstrator by ~2010!