Status on CMOS sensors

Auguste Besson

on behalf of

DAPNIA/Saclay, LPSC/Grenoble, LPC/Clermont-F., DESY, Uni. Hamburg, JINR-Dubna & IPHC/Strasbourg contributions from

IPN/Lyon, Uni. Frankfurt, GSI-Darmstadt, STAR coll.(LBNL, BNL)

- > ILC requirements
- > Review on CMOS Performances: state of the art
- > Progress on fast read-out sensors & ADC
- > Roadmap for the coming years
- > Summary

ILC requirements

- Beam background: 1st layer: ≥~ 5 hits/cm²/BX
 - \triangleright (4T, 500 GeV, R₀ = 1.5 cm, no safety factor)
 - $\sim 1.8 \times 10^{12} \text{ e}^{\pm}/\text{cm}^2/\text{yr}$ (safety factor of 3)
 - occupancy:
 - ➤ keep it below ~ few % (cluster multiplicity ~5-10)
 - \triangleright aim for a read-out time $\sim \le 25 \,\mu s$
- ILC vertex detector
 - 5−6 cylindrical layers : ~3000 cm²
 - 300-500 million pixels (20–40 μm pitch)
 - 1st complete ladder prototype ~ 2010
- Read-out speed objectives/ constraints
 - column parallel read-out ⊥ to beam axis
 - ADC @ the end of each column
 - − \varnothing zero suppression μ -circuits.

Review on CMOS Performances

- Detection efficiency
- Radiation hardness
- Resolution

General performances

(from H.E. beam tests @ DESY and CERN)

- Charged particle detection well established (analog output)
 - best performing technology:
 - > AMS 0.35 µm OPTO
 - N~ 10 e- ⇒S/N (MPV) 20-30
 - > eff>~ 99.5 %
 - operating temperature ≥~ 40°C
 - macroscopic sensors:
 - ➤ MIMOSA-5 (1 Mpix, 3.5 cm²)
 - ➤ MIMOSA-20 (=M*3) (200 kpix, 1x2 cm²)
 - ➤ MIMOSA-17 (65 kpix, 0.8 x 0.8 cm²)
- Efficiency vs rate of fake clusters:
 - vary cut on seed pixel:
 - \gt 6 \Rightarrow 12 ADC units (Noise \sim 1.5 ADC u.)
 - vary cut on Σ of crown charge:
 - > 0,3,4,9,13,17 ADC units
 - eff ~99.9 % for fake rate ~10⁻⁵

Radiation hardness: MIMOSA-15

Non ionising radiation tolerance

M-15 irradiated with O(1 MeV) neutrons tested with 6 GeV e- beam (DESY)

$$ightharpoonup T = -20 \, ^{\circ}\text{C}, \, t_{\text{r.o.}} \sim 700 \, \mu\text{s}$$

 \gt 5.8x10¹² n_{eq}/cm² values

derived with standard and soft cuts

Very Preliminary!

Fluence	0	0.47	2.1	5.8 (5/2)	5.8 (4/2)
S/N (MPV)	27.8 ± 0.5	21.8 ± 0.5	14.7 ± 0.3	≪8.7 ± 2.≫	≪7.5 ± 2.≫
Det. Eff. (%)	100.	99.9 ± 0.1	99.3 ± 0.2	77. \pm 2	$84. \pm 2.$

Ionising radiation tolerance

M-15 irradiated with 10 keV X-rays up to 1 MRad (tested @ DESY)

pixels modified against hole accumulation (thick oxide) and leakage current increase (guard ring)

$$F$$
 T = -20 °C, t_{ro} ~ 180 μ s

 \succ t_{r o} << 1 ms crucial @ room T

Very Preliminary!

Integ. Dose	Noise	S/N (MPV)	Detection Efficiency	
0	9.0 ± 1.1	27.8 ± 0.5	100 %	
1 MRad	10.7 ± 0.9	$\textbf{19.5} \pm \textbf{0.2}$	99.96 \pm 0.04 %	

Preliminary conclusion

- at least 3 years of running viable @ room T° (or close to)
- further assessment needed
 - > test 10 MeV e
 - > sensors with integrated CDS, ADC, etc.

Spatial Resolution vs ADC resolution

- Single point resolution vs pitch
 - hit position reconstructed with eta function, exploiting charge sharing between pixels
 - $-\sigma_{sp}\sim 1.5~\mu m$ (20 μm pitch)
 - obtained with charge encoded on 12 bits.
- σ_{sp} dependence on ADC granularity
 - minimise number of ADC bits
 - > minimise dimensions, t_{r.o.}, P_{diss}
 - effect simulated on real MIMOSA data

(20 μ m pitch, 120 GeV/c π [±] beam, M9, T=20 °C)

- $> \sigma_{sp} < 2 \mu m$ (4 bits ADC)
- $\succ \sigma_{sp} \sim 1.6\text{-}1.7 \ \mu m \ (5 \ bits \ ADC)$

- results based on simple pixel (N~≤10 e⁻)
 - ➤ rad.tol. pixel integrating CDS (N ~≤ 15 e⁻) not yet evaluated

Fast read-out sensors with // read-out and digital output

Discri. , ADC, ∅ suppression

Fast read-out architecture

- Parallel development of 3 components
 - column // arrays with CDS/pixel and discriminated output
 - 4-5 bit ADCs intended to replace discriminators
 - − ∅ µcircuits & output memories
- 2 stages approach
 - develop sensors for mid-term applications (2009)
 (less severe requirements)
 - \triangleright EUDET: 1x2 cm², tr.o. ~100 µs, discri. binary charge encoding (no ADC)
 - > STAR: 2x2 cm², tr.o. ~200 μs, discri. binary charge encoding (no ADC)
 - ⇒ will be operated in real experimental conditions by 2009/2011
 - develop ILC sensors (mainly for inner layer) extrapolated from EUDET & STAR
 - ➤ increase row rad-out frequency by ~50%
 - replace discriminators by ADCs

MIMOSA-16

- Features: M8 (TSMC 0.25 μm) translation in AMS-OPTO 0.35 μm techno.
 - ~11 (« 14 ») AND 15 μ m (« 20 ») epi layer instead of < 7 μ m
 - 32 // columns of 128 pixels (pitch 25 μm), 24 ended with Discriminator
 - on pixel CDS; 4 sub arrays (various diode size, rad. hard pixels, enhanced in pixel amplification against noise of read-out chain)

- Preliminary tests of analog part ("20 μm" epi.) performed in Saclay:
 - sensors illuminated with 55 Fe source and r.o. frequency varied up to ≥~ 150 MHz
 - measurements of N(pixel), FPN (end of column),
 pedestal variation, CCE (3x3 pixel clusters) vs F_{r.o.}
 - tests of analog part (« 14 » epitaxy) started in Saclay first results (CCE)
 - > noise performance satisfactory (like MIMOSA-8 and -15)
 - \triangleright CCE: very poor for S1 (1.7x1.7 μ m²) & poor for S2/S3 (2.4x2.4 μ m²)
 - already observed with MIMOSA-15 but more pronounced for "20 μm" option
 - suspected origin: diffusion of P-well, reducing the N-well/epitaxy contact, supported by CCE of S4 (4.5x4.5 μm^2 diode)

- tests of analog part (« 14 »µm epitaxy) started in Saclay
- digital part: June 2007 at IPHC
- beam tests in September 2007 at CERN (T4 H6)

Zero suppression: Block diagram and 1st proto.

- Chip read-out architecture including digitisation and zero suppression
 - pixel array: 1024 x 1024 pixels read-out row by row.
 - > 16 groups of rows.
 - > ADC at the bottom of each column
 - zero suppression algorithm ,
 - > find M Hits for each row
 - find N Hits for each group _

N and M determined by occupancy rate

> memory which stores M hits and serial transmission

- 2 step, line by line, logic (adapted to EUDET and STAR):
 - > step-1 (inside blocks of 64 columns): identify up to 6 series of 4 neighbour pixels per line delivering signal > discriminator threshold
 - step-2 : read-out outcome of step-1 in all blocks and keep up to 9 series of 4 neighbour pixels
- 4 output memories (512x16 bits) taken from AMS I.P. library
- surface 3.6 x 3.6 mm²
- status : ➤ design under way
 - > submission scheduled for end of June 2007
 - back from foundry end of September 2007
 - tests completed by end of year

ADC Developments

- Several different ADC architecture under development @IN2P3 and DAPNIA
 - LPSC (Grenoble): Ampli + semi-flash (pipe-line) 5- and 4-bit ADC for a column pair
 - LPCC (Clermont): flash 4+1.5-bit ADC for a column pair
 - DAPNIA (Saclay): Ampli + SAR (4- and) 5-bit ADC
 - IPHC (Strasbourg): SAR 4-bit and Wilkinson 4-bit ADCs

Lab	proto	Phase	bits	chan.	F _{r.o.} (MHz)	dim. (µm²)	P _{diss.} (μW)	eff. bits	Problems
LPSC	ADC1	test	5	8	15-25	43 x 1500	1700	4	Offset & N
	ADC2	test	5	8	15-25	43 x 1500	1700		
	ADC3	fab	4	8	25	40 x 943	800		
	ADC4	design	5	8 - 64	25	40 X 1100	900		
LPCC	ADC1	test	5.5	1	5(T)-10(S)	230 x 400	20 000	2.5	P _{diss.} & bits
	ADC2	fab	5.5	1	10	40 X 1100	1000		
DAPNIA	ADC1	test	5	4	4	25 x 1000	300	≥~ 2*	missing bits
	ADC2	fab	5	4	4	25 x 1000	300		
IPHC	ADC1	test	4	16	10	25 x 1385	660		
	ADC2	test	4	16	10	25 x 1540	545		

- First mature ADC (LPSC) design expected to come out before spring 2008
 - > submission of 1st col. // pixel array prototype hosting integrated ADCs in spring 2008
 - ➤ integrated Ø zero supp. in 2009

Miscellaneous

Roadmap & other developments

roadmap / other developments

EUDET

- 2 arms of 3 planes (1-2 high resolution plane)
- provide ~1 μm resolution on 3 GeV e− beam (DESY)
- 2 steps: 2007 (analog outputs) & 2009 (digital outputs)

STAR

- 2 cylindral layers: 2000/3000 cm²
- 500 millions pixels (30 μm pitch)
- resolution requirements ~≤ 8 μm
- non ionising radiation hardness (@ room T)
- MIMOSA-8 results : \sim 7-8 μ m resolution with a 25 μ m pitch
- ⇒ discri output, with pitch ≤ 20 μm
- 2 steps: 2008 (analog outputs) & 2011 (digital outputs)

CBM

- 3 rectangular layers: 2000 cm²
- 200–300 milion pixels (20–30 μm pitch)

MIMOSTAR-3 (=M-20)

Features

- AMS-OPTO engineering run, fabricated in summer 2006.
- 2+4 wafers; 2 epi layers options (« 14 » & « 20 » μ m)
- 200 k-pixels, ~2 cm², $t_{r.o.}$ ~ 4 ms

Applications

- STAR: first step (analog output)
- EUDET: demonstrator (1kframe/s) adapted for standard resolution plane
- ILC: discri replaced by ADC ⇒ fulfill Layers 3-4-5 requirements.

MIMOSA-20 ("14" & "20" μm epitaxy) illuminated with 55 Fe source

ightarrow CCE ("14" μm) \sim 30–40 % higher than CCE ("20" μm)

Next prototype with column // architecture : MIMOSA-22

- Extension of MIMOSA-16
 - > ⇒ larger surface, smaller pitch, optimised pixel, JTAG, more testability
- Pixel characteristics (still under studies)
 - pitch = $18.4 \mu m$ (compromise resolution/pixel layout)
 - diode surface $\sim 10-20 \ \mu m^2$ (to optimise charge coll. eff. & gain)
 - 64 columns ended with discriminator
 - 8 columns with analog output (test purposes)
 - ≥ 8 sub-matrices (≥ 4 pixels designs w/o ion. rad. tol. diode)
 - > active digital area : 64 x 544-576 pixels
- Status ⇒ design underway @ IPHC and DAPNIA.
 - submission end of September 2007

Roadmap towards the Final Chip for EUDET & STAR ⇒ILC

- Spring 2008: MIMOSA-22+
 - MIMOSA-22 + \varnothing (SUZE-01)
 - 1 or 2 subarrays
 - large surface: $\sim 1 \times 0.5$ cm² (~ 500 pixels in column)
 - $\geq \sim \frac{1}{4}$ of final number of columns (256 / 1088)

- extension of MIMOSA-22+
- 1088 col x 544/576 pixels (1x2 cm²) ⇒engineering run
- read-out time $\sim 100 \mu s$

- incorporate ADC (with integrated discrimination) ⇒ outer layers
- increase frequency by ~ 50 % (new Ø and memory design)⇒ inner layers

Summary

- CMOS sensors developed for running conditions
 - > with beam background >> MC simulation (sizeable occupancy uncertainty)
- General performances well established
 - eff., S/N, fake hits, resolution, rad. hardness, moderate cooling
 - AMS 0.35 μm OPTO techno assessed. ⇒Baseline for R & D
 - new generation of full scale sensors underway:
 - > real experimental conditions: equip STAR, EUDET, CBM demonstrator in 2007/2008
- Fast read-out sensors progressing steadily
 - column // architecture with integrated discri. operationnal
 - ADCs close to final design
 - — Ø μcircuits: 1st generation close to fabrication
- Milestones
 - EUDET/STAR: final sensors with discri. binary charge encoding (2009 and 2010 resp.)
 - replace discris by ADCs. Increase final read-out frequency
 - find the final fabrication process (\sim < 0.2 µm)
- Not covered by this talk:
 - integration issues
 - thinning : (see Marco/Devis talk)
 - exploration of new fab. process (ST μ-electronics 0.25 μm) ⇒M21 under test.

back up slides

Constraints from beamstrahlung

```
lacksquare 1st layer (L0) : \gtrsim 5 hits/cm^2/BX for 4T / 500 GeV / {f R}_0 = 1.5 cm / no safety factor
                              \Rightarrow \lesssim 1.8 \cdot 10^{12} \text{ e}^{\pm}/\text{cm}^2/\text{yr} (safety factor of 3)
                    2nd layer: 8 times less (direct)

    3rd layer: 25 times less (direct)

  Consequences on Occupancy in 1st layer (L0): \lesssim 0.9 % hit occupancy in 50 \mu s (r.o. time of TESLA TDR)
                                                        \hookrightarrow signal spread on \lesssim 4.5–9 % pixels (cluster multiplicity \sim 5-10)
         \Rightarrow 1) aim for shorter read-out time in L0 than in TDR \mapsto typically \lesssim 25 \mu s
                      (compromise with power dissipation, multiple scattering, ...)
             2) aim for shorter read-out time in L1 than in TDR \rightarrow typically \sim 50 \mu s (vs 250 \mu s)
                      and presumably smaller radius (e.g. \sim 20 – 22 mm)
                      (use tracks extrapolated from L1-4 down to L0)
             3) aim for relaxed read-out time in L2, L3, L4: \sim 100 – 200 \mu s (vs 250 \mu s)
                                       \hookrightarrow depends on backscattered e^\pm rate
  Consequences on Radiation Tolerance in L0:
     st dose integrated over 3 years: \lesssim 5.4·10^{12} e/cm^2 \longrightarrow \lesssim 2·10^{11} n_{eq}/cm^2 (NIEL \sim 1/30)
              \diamond neutron dose integrated over 3 years much smaller : \lesssim 3 \cdot 10^{10} \; n_{eq}/{\rm cm}^2 (safety factor of 10)
```

MIMOSA-8

- MIMOSA-8: TSMC 0.25 μm digital fab. process (< 7 μm epitaxy)
 - ullet 32 // columns of 128 pixels (pitch: 25 μm)
 - ullet read-out time \sim 50 μs (resp. 20 μs) with (resp. without) DAQ
 - on-pixel CDS
 - discriminator (and DS) integrated at end of each of 24 columns

■ Detection performance with 5 GeV/c e beam (DESY):

- Excellent m.i.p. detection performances despite modest thickness of epitaxial layer
 - st det. eff. \sim 99.3 % for fake rate of \sim 0.1 %
- st discri. cluster mult. \sim 3–4
- $*P_{diss} \lesssim$ 500 μ W / col.
- >> Architecture validated for next steps: techno. with thick epitaxy, rad. tol. pixel at Troom. ADC. Ø. etc.

APPENDIX A: Summary of fabricated MIMOSA sensors mentionned in the report

```
MIMOSA-8
                fabrication.
                             2003 - TSMC-0.25 techno. - epitaxy thickness < 7 \mu m
                              25 μm pitch - 128 rows - 24/8 col. with digital/analog output - 4 sub-arrays with different pixels
                 geometry
                              column parallel read-out - clock frequency \geq 100 \text{ MHz} - row read-out frequency \sim 6 \text{ MHz}
                features
MIMOSA-9
                             2003 - AMS-0.35 OPTO techno. - epitaxy thickness \sim 11 \ \mu m (also with "high-res" substrate without epitaxy)
                fabrication
                geometry
                              20, 30 & 40 μm pitch - various pixel architectures
                              technology exploration - analog output - serial read-out
                features
                             2005 - AMS-0.35 opto techno. - epitaxy thickness \sim 11~\mu m
MIMOSA-11 fabrication
                              20 & 30 μm pitch - 106x106 pixels - 4 sub-arrays
                geometry
                              analog output - serial read-out
                features
MIMOSA-14 fabrication
                             2005 - AMS-0.35 opto techno. - epitaxy thickness \sim 11~\mu m
                              30 \mu m pitch - 2 groups of 64x128 pixels
                geometry
                features
                              STAR prototype - ionising rad. tol. pixels - analog output - serial read-out
                             2005 - AMS-0.35 opto techno. - epitaxy thickness \sim 11~\mu m
MIMOSA-15 fabrication
                             20 & 30 μm pitch - 4 sub-arrays with various pixels
                 geometry
                             non-ionising rad.tol. pixels - analog output - serial read-out
                features
MIMOSA-16 fabrication
                             2006/7 - AMS-0.35 opto techno. - epitaxy thickness \sim 11 \& 15 \ \mu m
                              25 μm pitch - 128 rows - 24/8 col. with digital/analog output - 4 sub-arrays with different pixels
                geometry
                             column parallel read-out - clock frequency \geq 100 \text{ MHz} - row read-out frequency \gtrsim 6 \text{ MHz}
                features
MIMOSA-17 fabrication
                             2006/7 - AMS-0.35 opto techno. - epitaxy thickness \sim 11 \& 15 \ \mu m
                              30 \mu m pitch - 4 groups of 64x256 pixels
                geometry
                             EUDET demonstrator - 4 analog outputs - serial read-out inside each group
                features
MIMOSA-18 fabrication
                             2006/7 - AMS-0.35 opto techno. - epitaxy thickness \sim 11 \& 15 \ \mu m
                             10 \mu m pitch - 512x512 pixels
                geometry
                             EUDET sensor - sub-micron resolution - analog output - serial read-out inside each group
                features
                             2006/7 - AMS-0.35 opto techno. - epitaxy thickness \sim 11 \& 15 \ \mu m
MIMOSA-20 fabrication
                              30 μm pitch - ionising rad tol.pixels - 2 groups of 320x320 pixels
                geometry
                              STAR demonstrator (final prototype) - 2 analog outputs - serial read-out inside each group
                features
MIMOSA-21 fabrication
                             2006 - STM-0.25 BICMOS techno. - sensitive volume includes "high-res" substrate
                             128x192 pixels with 10 \mu m pitch - 64x96 pixels with 20 \mu m pitch
                 geometry
                              beta-imager - analog outputs - serial read-out
                features
```

APPENDIX B: Sensors and micro-circuits to be fabricated ≤ 2010

MIMOSA-22 (for EUDET and STAR.)	fabrication geometry features	2007 - AMS-0.35 OPTO techno epitaxy thickness $\sim 11~\mu m$ 18 μm pitch - 500-600 rows - 64/8 col. with digital/analog output - 6-8 sub-arrays with different pixels col. parallel read-out - clock frequency $\geq 100~{\rm MHz}$ - row read-out frequency $\sim 6~{\rm MHz}$
SUZE-01 (for EUDET & STAR.)	fabrication features	2007 - AMS-0.35 OPTO techno no epitaxy zero suppression logic & memories - specific to EUDET & STAR.
MIMOSA-22+E (for EUDET)	fabrication geometry features	2008 - AMS-0.35 opto techno epitaxy thickness $\sim 11~\mu m$ 18 μm pitch - 500-600 rows - \geq 256 col. with digital output - \leq 2 sub-arrays with different pixels col. parallel read-out with integ. zero suppression - clock frequency \geq 100 MHz - row read-out frequency \sim 6 MHz
MIMOSA-22+S (for STAR.)	fabrication geometry features	2008 - AMS-0.35 opto techno epitaxy thickness $\sim 11~\mu m$ 18 μm pitch - 1088 rows - \geq 256 col. with digital output - \leq 2 sub-arrays with different pixels col. parallel read-out with integ. zero suppression - clock frequency \geq 100 MHz - row read-out frequency \sim 6 MHz
MIMOSA-22++E (for EUDET)	fabrication geometry features	2008/2009 - AMS-0.35 opto techno epitaxy thickness $\sim 11~\mu m$ 18 μm pitch - 500-600 rows - 1088 col. with digital output final chip equipping telescope - col. parallel read-out with integ. zero suppression - read-out time $\sim 100~\mu s$
MIMOSA-22++S (for STAR.)	fabrication geometry features	2009 - AMS-0.35 OPTO techno epitaxy thickness $\sim 11~\mu m$ 18 μm pitch - 1088 rows - 1088 col. with digital output final chip for HFT col. parallel read-out with integ. 0 supp read-out time $\lesssim 200~\mu s$
ADC (for ILC)	fabrication features	2007/2008 - AMS-0.35 opto techno no epitaxy various architectures - 4 or 5 bits - ≥ 8 channels - specif. for EUDET & STAR.
MIMOSA16+ (for ILC)	fabrication geometry features	2008 - AMS-0.35 opto techno epitaxy thickness $\sim 11~\mu m$ 20-22 μm pitch - 256-320 rows - \geq 64 col. with digital output - \geq 2 sub-arrays with different pixels col. parallel read-out with integ. ADC
SUZE-02 (for ILC)	fabrication features	2008 - AMS-0.35 opto techno no epitaxy 0 suppression micro-circuits & memories - specific to ILC
MIMOSA-X	fabrication	$2008/2009$ - various technologies with $< 0.2~\mu m$ feature size
ADC-X	fabrication	$2008/2009$ - various technologies with $< 0.2~\mu m$ feature size
SUZE-X	fabrication	$2008/2009$ - selected technology with $< 0.2~\mu m$ feature size
MIMOSA16++ (for ILC)	fabrication geometry features	2009 - AMS-0.35 opto techno.? - epitaxy thickness $\sim 11~\mu m$? 20-22 μm pitch - 256-320 rows - \geq 256 col. with digital output - \leq 2 sub-arrays with different pixels col. parallel read-out with integ. ADC & zero suppression
MIMOSA16+++ (for ILC)	fabrication geometry features	2010 - technology? 20-22 μm pitch - 256-320 rows - \geq 256 col. with digital output - \leq 2 sub-arrays with different pixels final sensor - col. parallel read-out with integ. ADC & 0 suppression

Zero suppression: Block diagram and 1st proto.

- SUZE-01: small fully digital prototype in AMS 0.35 μm
 - 2 step, line by line, logic (adapted to EUDET and STAR):
 - > step-1 (inside blocks of 64 columns): identify up to 6 series of 4 neighbour pixels per line delivering signal > discriminator threshold
 - > step-2 : read-out outcome of step-1 in all blocks and keep up to 9 series of 4 neighbour pixels
 - 4 output memories (512x16 bits) taken from AMS I.P. library
 - surface 3.6 x 3.6 mm²
 - status : > design under way
 - > submission scheduled for end of June 2007
 - back from foundry end of September 2007
 - tests completed by end of year

Labs	No. of Chip	Phase* (D. F. T.)	No. of Bits	No. Of channels	Freq. of Readout (MHz)	Dimension (µm²)	Power	Effective No. of Bits	Pb?
LPSC	2	Т	5	8	15 - 25	43x1500 (1 ADC→2)	1700 μW (1 ADC→2)	4	Offset Digit noise
	1	F	4	8	25	40x943 (1 ADC→2)	800 μW (1 ADC → 2)		
	1	D	5	+8- < 64	25	40x1100 (1 ADC→2)	900 μW (1 ADC → 2)		
Labs	No. of Chip	Phase* (D. F. T.)	No. of Bits	No. Of channels	Freq. of Readout (MHz)	Dimension (µm²)	Power	Effective No. of Bits	Pb?
LPCC	1	Т	5.5	1	5 Test 10 Sim	230x400	20000 μW	2.5	Power x20
	1	F	5.5	1	10	40x1100	1000 μW		
Labs	No. of Chip	Phase* (D. F. T.)	No. of Bits	No. Of channels	Freq. of Readout (MHz)	Dimension (µm²)	Power	Effective No. of Bits	Pb?
DAPNIA	1	Т	5	4	4	25x1000	300 µW	2 - 5**	Missing bits
	1	F	5	4	4	25x1000	300 μW		Offset nonlinearity
Labs	No. of Chip	Phase* (D. F. T.)	No. of Bits	No. Of channels	Freq. of Readout (MHz)	Dimension (µm²)	Power	Effective No. of Bits	Pb?
IPHC	1	Т	4	16	10	25x1385	660 µW		
	1	Т	4	16	10	25x1540	545 μW		24

^{*} D: Design, F: Fabrication, T: Test

^{** 2} bits if LSB=1 mV, 5 bits if LSB = 20 mV