

The Forward Region Calorimetry

Ch. Grah for the FCAL Collaboration

R&D Review 2007 Hamburg May 31st

The FCAL Collaboration
 Forward Calorimetry Overview
 LumiCal
 BeamCal
 R&D of the FCAL Collaboration:

 radiation hard sensors

Summary - Milestones

The FCAL Collaboration

13 Institutes from 10 countries:

University of Colorado, Boulder
Brookhaven National Lab, Upton
Yale University, New Haven
Laboratoire de l Accélérateur Linéaire, Orsay
Royal Holloway University, London
AGH University, Krakow
Institute of Nuclear Physics, PAN, Krakow
DESY
Joint Institute Nuclear Research, Dubna
National Center of Particle & HEP, Minsk
Academy of Science, Prague
VINCA Inst. of Nuclear Sciences, Belgrade
Tel Aviv University

Supported by: >EUROTeV, >EUDET, >NoRHDIA >INTAS >DOE

Cooperation with SLAC

http://www-zeuthen.desy.de/ILC/fcal/

Tasks of the Forward Region

ECal and Very Forward Tracker acceptance region.

<u>Challenges:</u> <u>High precision, high occupancy, high radiation dose, fast read-out!</u>

31/5/2007

Design of the Forward Region

Forward Region Overview

- The FCAL Collaboration develops the Very Forward Detectors, LumiCal, BeamCal and GamCal.
- > Due to the small bunch size $\sigma_x \sim 650$ nm, $\sigma_y \sim 5.7$ nm and the high bunch charge, N x 10¹⁰/bunch, beamstrahlung becomes important.

	LDC			SID		
	R _{Inne} r	R _{Oute} r	Z _{Pos}	R _{Inne} r	R _{Oute} r	Z _{Pos}
	mm	mm	mm	mm	mm	mm
LumiCal	80	350	2270	60	200	1800
BeamCal	20	165	3550	16	110	3000
GamCal	-	-	~180m	-	-	~180m

The geometry has to be carefully optimized to minimize background due to the beamstrahlung pairs.

31/5/2007

The Forward Region Calorimetry

6

The LumiCal

Precise Measurement of the ILC's luminosity

The Forward Region Calorimetry 7

Precise Measurement of the Luminosity

> Required precision is $\Delta L/L \sim 10^{-4}$ (GigaZ) and $\Delta L/L \sim 10^{-3}$ at higher energies.

- > Bhabha scattering ee->ee(γ) is the gauge process:
 - Count Bhabha event in a well known acceptance region => L = N/ σ
 - High statistics at low angles (N_{Bhabha} ~ 1/θ³)
 => need about 1 year of running at design luminosity
 - Well known electromagnetic process (LEP: 10⁻³): the current limit on the theoretical cross section error is at ~5 10⁻⁴.
 - We work in collaboration with theory groups to improve this limit (in Zeuthen, Katowice, Krakow and Tel Aviv).

Physics Background and Beam-Beam Effect

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Δ

30

50

40

60

భ

- > 2-photon events are the main background.
- We determined an efficient set of cuts to reduce the background to the level of 10⁻⁴.
- The Bhabha Suppression Effect is due to the EM deflection and energy loss by beamstrahlung of the Bhabhas.
- The bias can be of the order of some %. These effects can be reduced but need further study.

31/5/2007

The Forward Region Calorimetry (mrad)

80

70

θ

MC simulations of LumiCal:

Derive requirements on design, segmentation, mechanical precision and impact of different magnetic field/crossing angles.

$\Delta L/L$	1.0 10-4
inner radius	4.2 <i>μ</i> m
radial offset	640 <i>µ</i> m
distance	300 <i>µ</i> m

LumiCal: Systematics

- Headon, 14,20 mrad X-angle outgoing beam
- 14 mrad X-angle detector axis
- 20 mrad X-angle detector axis

Recommendation: place LumiCal around outgoing beam and tilt it accordingly.

31/5/2007

Mechanical Design

Si/W sandwich calorimeter, 30-40 layers laser position monitoring system

Mechanical frame: decouple sensor support from absorber support structure, alternative designs under investigation.

Sensor carriers

31/5/2007

Laser Alignment System

31/5/2007

The Forward Region Calorimetry

13

The BeamCal

Particle Veto at Lowest Polar Angles

BeamCal Design

BeamCal Challenges

- BeamCal will extend the sensitive region to lowest polar angles.
- Challenge: Detect single high energetic particle on top of a background of 10⁴ low energetic e⁺e⁻ pairs.
- BeamCal serves also as part of the beam diagnostics system (see talk by B.Morse)

 γ μ^{-} μ^{-} μ^{+} μ^{+} μ^{+} μ^{+} μ^{+} μ^{+} μ^{+} μ^{+}

Background signal: 2-photon event, may fake the upper signal if the electron is not detected.

31/5/2007

The Forward Region Calorimetry

16

Particle Veto

Subracted Tile Energy

- We developed algorithms to efficiently veto single high energetic particles down to lowest polar angles.
- We investigated the impact of different layouts, cell sizes, etc..
- We need radiation hard sensors with a large dynamic range O(10⁴).

31/5/2007

İİL

FCAL R&D

Radiation Hard Sensors

R&D Capabilities of the FCAL Collaboration

> Sensor test capabilities available:

- Desy-Zeuthen, TAU, Krakow, Brookhaven, Prague, Minsk, JINR
- Electronics development capabilities available:
 - Krakow, Brookhaven, Minsk
- > Electronics test capabilities available:
 - Desy-Zeuthen, Krakow, Brookhaven, Minsk
- Integration facilities (clean room, wire bonder etc.)
 - Desy-Zeuthen, Brookhaven, JINR

Radiation Hard Sensor Materials

BeamCal: high energy deposition from low energetic pairs from beamstrahlung.

- We investigate several alternatives:
 - <u>CVD diamond sensors</u>
 - GaAs sensors
 - SiC
 - radiation hard silicon
- We perform different characterizing laboratory measurements (I-V, C-V, MIP response, low dose irradiation) as well as test beam measurements.

Polycrystalline Chemical Vapour Deposited Diamonds

- Samples from two manufacturers are under investigation:
 - Element Six_{TM}
 - Fraunhofer Institute for Applied Solid-State Physics - IAF

> $1 \times 1 \text{ cm}^2$, 200-900 µm thick

Investigation of Sensors polycrystalline CVD Diamond

response vs electric field

response vs particle fluence

CCD = Qmeas/Qinduced x thickness

31/5/2007

E64 CCD vs E-field

31/5/2007

Alternative Sensor Material: GaAs

- > Investigation of GaAs prototype started.
- >Investigated a first SiC prototype and expect to get more.

>Just got radhard Si prototype to investigate.

> Next irradiation test beam end of June.

- The FCAL Collaboration develops the detectors in the very forward region of the ILC independent of a detector concept.
- MC simulations allowed to develop a very clear understanding of the physics background, beam-beam effects and the requirements on positioning and precision.
- Precision and position monitoring is essential for the LumiCal. Radiation hard sensors are of crucial importance for the BeamCal.
- We have an intensive R&D activity on radiation hard sensors. We investigate CVD diamond, GaAs, SiC and start to investigate radiation hard Si.
- \succ In the next talks:
 - we will introduce the concept of beam diagnostics and the GamCal detector.
 - We will present our efforts on the development of readout electronics for Lumi- and BeamCal.

Milestones for the Next 3 Years

- More realistic simulation of LumiCal and the impact of the Bhabha selection criteria on the luminosity measurement.
- Completion of the performance studies for BeamCal including additional effects and a realistic readout chain.
- Detailed simulation for the design of the GamCal system.
- Processing of the first layout of front-end electronics and performance tests.
- Design and construction of a full sensor plane for LumiCal and BeamCal for beam tests.
- Continuation of the radiation hardness studies for CVD diamonds, GaAs and Si sensors in low energy electron beams.

Backup Slides

The Forward Region Calorimetry

27

Silicon Sensors for LumiCal

- > For LumiCal the precision is of major importance.
- \succ Radiation is not an issue in this region.
- The gaps between sensor tiles should be kept as small as possible.

Preparations and Programme

Samplse	Thickness, µm	Dose, MGy
E6_B2 (E6)	500	>1
DESY 8 (IAF)	300	>1
FAP 5 (IAF)	470	>5
E6_4p (E6)	470	>5

CCD: Charge Collection Distance

31/5/2007