

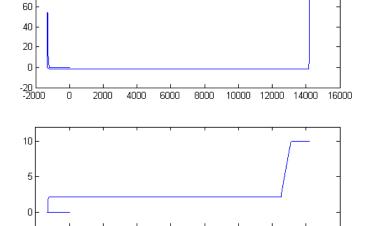
Status of RTML Design and Tuning Studies

PT SLAC

DESY GDE Meeting

Global Design Effort

1/12


Activities

- Optics Design
- Return Line Issues
 - Steering and Alignment
 - Stray Fields
 - Space Charge
- Turnaround and Spin Rotator Tuning
- Bunch Compressor Tuning
- Next steps

Optics Design

- First "complete" optics since central injector
- Includes
 - Everything from DRX to ML
 - Different lengths for e+ and e- Return lines
 - Approximately correct lengths and elevation changes
- Doesn't yet include
 - Extraction lines
 - Exact geometry match to site
 - Meeting Sunday to discuss this
 - Adequate lattice matching in some areas
- Posted to RDR wiki

4000

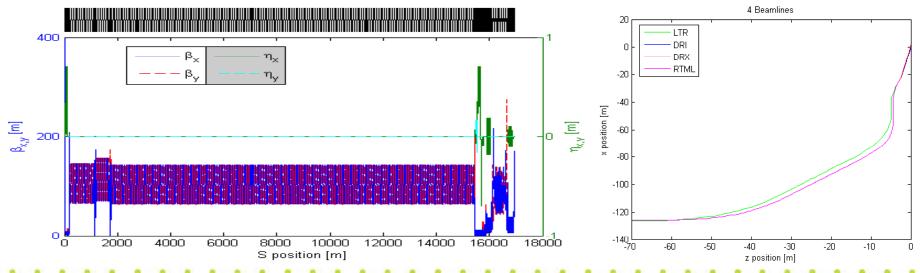
6000

8000

10000

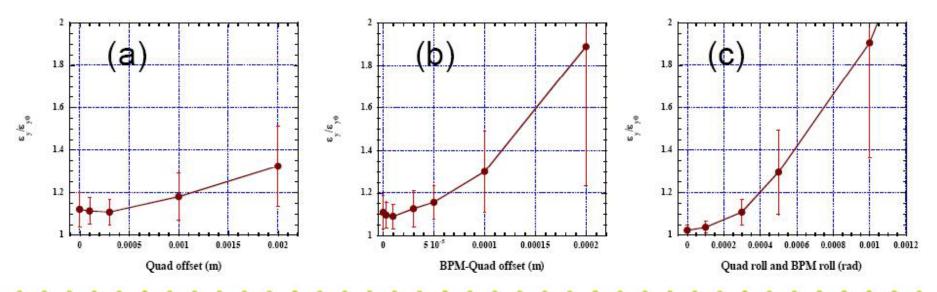
12000 14000

16000


2000

0

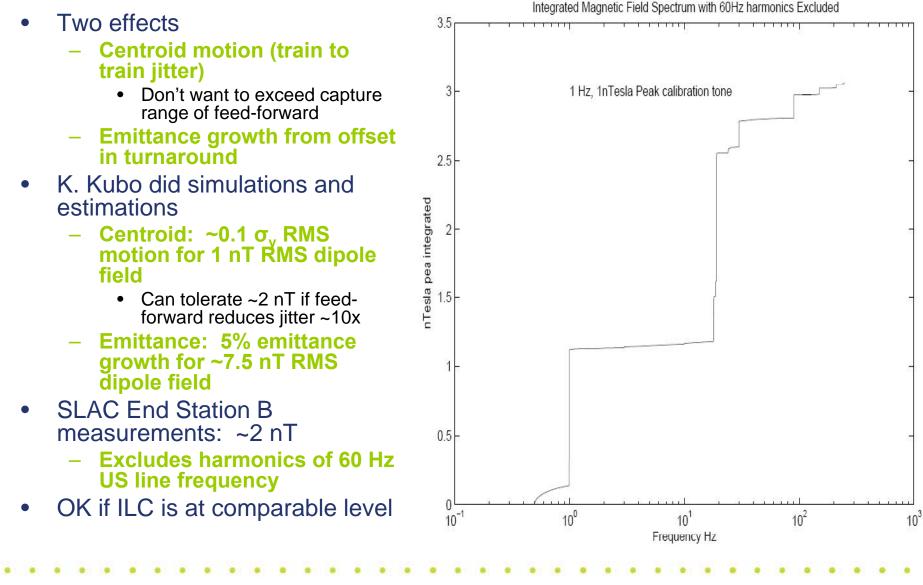
-2000


DESY GDE Meeting

Global Design Effort

3/12

Return Line Steering and Alignment


- Usual issue of static misalignments \rightarrow growth in emittance
- K. Kubo simulation perform KM assuming
 - RMS Quad offset == 300 μm
 - RMS BPM-to-Quad offset == 30 μm
 - RMS quad/BPM roll == 300 µrad
- Resulted in 2 nm (10%) emittance growth
 - Dominated by xy coupling from quad roll
 - Expect xy coupling to be corrected by global decoupling, not simulated in this study

DESY GDE Meeting

Global Design Effort

Return Line: AC Stray Fields

DESY GDE Meeting

Global Design Effort

5 / 12

Return Line: Space Charge

- For ILC damped beam at 5 GeV, incoherent space charge tune spread ~ 0.01/km
- Adds up to ~0.15 over length of Return line and turnaround
- Is this a problem?
 - Maybe not single pass beamline, no resonances to worry about
 - Maybe so emittance blowup, breakdown in global tuning techniques
- S. Panagiotis (FNAL) and M. Venturini (LBL) looking into this issue
 - Hope to solve it before the end of the fiscal year

Turnaround and Spin Rotator Tuning

- Studies performed with 2006 optics
 - Stronger focusing in turnaround
- Steering studies
 - Used KM + dispersion knobs
 - Included quad offsets, rolls + errors, BPM offsets, bend rolls + errors
 - Mean emittance growth reduced to 7.6 nm
 - 6.1 nm from xy coupling, not tuned in this study
 - 1.5 nm from chromaticity of lattice matching areas
 - Improved in 2007 optics
 - Dispersion *eliminated*, subject to limited resolution and systematics of wire scanners

Turnaround + Spin Rotator Tuning (2)

- J. Smith looked at coupling correction
 - Used similar parameters for errors and misalignments
 - Coupling could be completely corrected using skew quads near the emittance station, tuning to zero <xy> in 4-D emittance station
 - Skew quads far away not as effective
 - Exciting skew quads changes the orbit thru the turnaround...
 - ...which leads to vertical dispersion at the wires...
 - ...where there's uncorrected horizontal dispersion...
 - ...which leads to confusion when trying to tune <xy>
 - Switching to 2-D emittance station also reduces effectiveness
 - Correction algorithm may have been non-optimal
 - Need to revisit this issue

- Used 2006 optics and beam conditions
 - Shorter beam from DR
 - 6 mm, now up to 9 mm
 - Different BC configuration
- K. Kubo and PT looked at the situation
 - Got different results Kubo-san's were worse than mine
 - Differences are now understood
 - Kubo-san left out cavity fringe fields reduces effect of cavity pitch by factor of 2, emittance effect by factor of 4
 - I left out sector bend vertical offsets leads to ~3 nm additional emittance growth after steering
 - Need to go back, do simulations, see if we get the same answer?

Emittance Tuning: Summation

- Return line: might be OK
 - 2 nm emittance growth dominated by coupling
 - Coupling not corrected in that study
 - Space charge may cause problems!
- Turnaround + spin rotator: might be OK
 - Dispersion correction seems very effective
 - Need closer look at coupling correction
 - Need to include bend magnet offsets
- Bunch compressor: Problem!
 - Initial simulations show 7.5 nm emittance growth at 90% CL
 - Tolerance is 4.0 nm for all RTML!
 - Existing simulations not at satisfactory level of completeness
 - Most serious problem is cavity pitches
 - Possible that improvements in techniques are possible
- Need to migrate studies to 2007 optics
 - Many differences from 2006 optics
 - Longer bunch in DR == more problems in BC
 - Changed BC configuration should mitigate this somewhat
 - Weaker focusing in turnaround == fewer problems there
 - Improved lattice matching in some areas (not all!)

- Optics Design
 - Work on defining magnet types with Magnet TS
 - In progress
 - Define beamline geometries in DR inj/ext area
 - In progress, meeting this week
 - Improve lattice matching and match geometry of design to CFS geometry
 - Work package for Cornell in FY08 (if funded!)
- Emittance Preservation
 - Migrate to 2007 optics
 - Integrate dispersion and coupling correction
 - Improve performance in BC

Questions / Comments?

"Watch out, you can't ignore what's going on When your visions are drying out Like the oceans from the underworld..." -All

-Alphaville

DESY GDE Meeting

Global Design Effort