

The charged Higgs boson at LEP

Towards the final combination

Pierre Lutz (Saclay)

A preliminary combination occured for the summer 2001 conferences. Since then, the 4 expts have finalized their results : (ALEPH 2002, L3 2003, DELPHI 2004 and OPAL hopefully soon) It's time to go a step forward just before the final words on this subject from LEP

1/06/2007

Introduction

 Charged Higgs boson (H⁶): colorless, spinless, electrically charged particle.

INSTANT EVIDENCE OF PHYSICS BEYOND THE STANDARD MODEL

 Appears in any Two-Higgs-Doublet Models (2HDM)

1/06/2007

LCWS07 DESY / Pierre Lutz

Basics

σ(e⁺e⁻ -> H⁺H⁻) = k(1-4m²_H/s)^{3/2}
 (ew)radiative corrections are small (~5%)

 Decay modes : cs, τν and W*A
 Branching fractions depend on type of 2 Higgs Doublet Model (2HDM)

Dominant background : W pairs

1/06/2007

LCWS07 DESY / Pierre Lutz

List of available searches

Exp't (Ref.)	Final state	\sqrt{s} (GeV)	\mathcal{L} (pb ⁻¹)	$m_{ m H}$ range $({ m GeV}/c^2)$	# samples
ALEPH	$H^+H^- \rightarrow cscs$	189 - 209	630	45 - 100	
[1]	$H^+H^- \rightarrow cs\tau\nu$	189 - 209	630	55 - 100	22
	$H^+H^- \rightarrow \tau \nu \tau \nu$	189 - 209	630	45 - 100	
DELPHI	$H^+H^- \rightarrow cscs$	183 - 209	650	40 - 100	
[2]	$H^+H^- \rightarrow cs\tau\nu$	183 - 209	625	40 - 100	
	$H^+H^- \rightarrow \tau \nu \tau \nu$	183 - 209	620	40 - 100	
	$II^+II^- \rightarrow W^*A\tau\nu$	189 - 209	600	40 - 100	43
	$H^+H^- \rightarrow W^*AW^*A$	189 - 209	600	40 - 100	
L3	$H^+H^- \rightarrow cscs$	183 - 209	685	50 - 100	
[3]	$H^+H^- \rightarrow cs\tau\nu$	183 - 209	685	50 - 100	12
	$H^+H^- \rightarrow \tau \nu \tau \nu$	183 - 209	685	50 - 100	
OPAL	$H^+H^- \rightarrow cscs$	183 - 209	670	40 - 100	
[4]	$H^+H^- \rightarrow cs\tau\nu$	183 - 209	670	40 - 100	
	$H^+H^- \rightarrow \tau \nu \tau \nu$	183 - 209	680	45 - 100	45 /
	$H^+H^- \rightarrow W^*A\tau\nu$	189 - 209	600		
	$\rm H^+H^- \rightarrow W^*AW^*A$	189 - 209	600		

2HDM type II

One Higgs doublet provides masses for up-type quarks, the other for down-type quarks (~MSSM)

• For large A masses, or $|\log(tanb)| > 1$, only cs and τv channels contribute.

1/06/2007

LCWS07 DESY / Pierre Lutz

2HDM type II (cont'd.)

 (Historical) assumption : the cs and τν channels exhaust the H⁺ decay width.

■ Plots are B(H⁺ -> τv) vs H⁺ mass. cs → low tanβ $\tau v \rightarrow$ high tanβ

1/06/2007

2HDM type II : ALEPH final

2HDM type II : DELPHI final

2HDM type II : L3 final

2HDM type II : final results

Experiment:	ALEPH	DELPHI	L3	
Total: Int. luminosity (pb ⁻¹):	630	620	685	
Backg. exp. / Events obs.				
$(c\bar{s})(\bar{c}s)$:	2806.0/2742	2179.3/2179	2473.8/2578	
$(c\bar{s})(\tau^{+}\nu):$	289.3/280	1122.8/1129	494.5/470	
$(\tau^{+}\nu)(\tau^{-}\bar{\nu}):$	39.8/45	73.6/66	149.8/147	
Events in all channels:	3135.1/3067	3375.7/3374	3118.1/3195	
Limit exp.(median)/ observed	GeV/c^2	GeV/c^2	GeV/c^2	
for B=0:	78.2/80.4	77.7/77.8	76.8/76.6	
for B=1:	89.2/87.8	88.9/90.1	84.3/83.7	
for any B:	77.1/79.3	76.3/74.4	75.7/76.4	

1/06/2007

LCWS07 DESY / Pierre Lutz

LCWS07 DESY / Pierre Lutz

1/06/2007

The values of mW used in background simulations has a strong impact on

LCWS07 DESY / Pierre Lutz

1/06/2007

2HDM type I

 One Higgs doublet provides masses to all (up- and down-type) quarks (~SM)

2HDM type I (cont'd.)
 Need a scan in a 3-dim space : m_H⁺,m_A, and tanβ

Conservatively, when there was an overlap between 2 channels, the one with the lowest expected sensitivity was ignored to avoid double counting W*AW*A and cscs as an exemple

Contours based on the observed p-values CL_b

Excess (< 3σ) in the W*A regions, for low and intermediate A masses

Pure fermionic decays

Pure bosonic decays

Everywhere, the limit is found in a region where an excess is observed : So, there is a systematic shift (~3 GeV) between obs. and expect.

Conclusions

Still preliminary, but nearly final. In the historical scenario (2HDM type II like) with fermionic decay channels alone m_H > 80.1 GeV (limited by WW background and W mass) NEW ! Exploration for a 2HDM type I (with mA > 12 GeV)т_н > 76.1 GeV due to a slight excess w.r.t. the expectation

Lessons for the future

We noticed too late that the expts have chosen different W mass in their simul.

(A : 80.45 ; D : 80.40 ; L3 : 80.356 ; O : 80.33)

It is impossible to correct for that !
 Overlapping channels should be treated with care, in order to avoid the (perhaps too) conservative approach used here. It would have been possible here with an explicit antibtag in the cs channel