

# Higgs self coupling

### Djamel BOUMEDIENE, Pascal GAY LPC Clermont-Ferrand







- 1) Introduction
- 2)  $\lambda_{hhh}$  measurement
- 3) Detector performance impact on  $\lambda_{hhh}$  measurement
  - └→ particle flow
  - └→ b-tag choice
  - └→ c contamination
- 4) Conclusion





- Study realized for a center of mass energy of 500 GeV
- Additional backgrounds w.r.t published analysis
- m<sub>H</sub> = 120 GeV, Br(H→bb) = 68%
- Signal cross section 0.18 pb
- $\Delta \lambda_{hhh} / \lambda_{hhh} \sim 1.75 \Delta \sigma_{hhZ} / \sigma_{hhZ}$
- Presence of 6 jets, 8 jets events → overlap → importance of jet reconstruction (typical final state for ILC physics)



# ic Typical analysis scheme



## Fast simulation choice

- Parametric fast simulation
  - $\checkmark$  pflow ∆E/E = 30%/√E
  - <sup>™</sup> typical b-tag efficiency = 90% (c contamination 35%)
- Test of different detector performance through fast simulation with different parameters
  - └→ different pflow
  - Since the second se
- It is too difficult to regenerate all the MC for different detector resolutions (geometries)
  - → how to simulate different particle flow in the full simulation

### $\stackrel{r}{\rightarrow}$ many parameters :

- ECAL
- HCAL
- ID Part
- Confusion
- ..
- └→ various sets of parameters may lead to the same particle flow resolution

;lr

İİL



## Parametric Fast simulation

### detector simulation with a Parametric Monte Carlo

4 T magnetic field and  $P_t^{min}(charged) > 0.5 \text{GeV}/c$  are reconstructed

| VDET                   | $\theta \in [16^\circ, 164^\circ]$                                    |  |  |
|------------------------|-----------------------------------------------------------------------|--|--|
| TPC                    | $\theta \in [12^\circ, 168^\circ]$                                    |  |  |
| Forward tracker        | $\theta \in [5^{\circ}, 25^{\circ}]$ and $[155^{\circ}, 175^{\circ}]$ |  |  |
| Forward $\mu$ chambers | $	heta \in [5^\circ, 12^\circ]$ and $[168^\circ, 175^\circ]$          |  |  |

Table 2: Acceptances of the tracking system devices defined by their polar angle ( $\theta$ ).

| Sub-detector | Angular    | Energy    | Energy                            |
|--------------|------------|-----------|-----------------------------------|
| Sub-detector | acceptance | Threshold | resolution                        |
| ECAL         | 4.6°       | 1 GeV     | $\Delta E/E=10.2\%/\sqrt{E(GeV)}$ |
| HCAL         | 4.6°       | 1 GeV     | $\Delta E/E=40.5\%/\sqrt{E(GeV)}$ |
| LCAL         | 1.7-3.1°   | 30 GeV    | $\Delta E/E=10.\%/\sqrt{E(GeV)}$  |

Table 3: Characteristics of the calorimeters.

```
Angular acceptance down to 5^{\circ} (TPC+Calo.)
2^{\circ} Luminometer
```

### jet b-tagging

- based on combination of impact parameter in rz and r $\phi$  views.
- use b-tagging parametrisation from R. Hawkings (5 $\mu$ m, 5 layers)

ilr

İİĹ



## Monte Carlo simulation

To obtain a realistic result, the generated luminosity should be greater than the expected luminosity (drawback for a full simulation)

| Processes   | σ(pb)    | N Generated | Generated<br>luminosity<br>(pb <sup>-1</sup> ) | N expected<br>(L = 500 pb <sup>-1</sup> ) |
|-------------|----------|-------------|------------------------------------------------|-------------------------------------------|
| hhZ         | 0,18441  | 15k         | 81340,49                                       | 92,2                                      |
| Backgrounds | 699      | 1820k       |                                                | 332167                                    |
| tt          | 526,4    | 740k        | 1880,7                                         | 263200                                    |
| ZZZ         | 1,051    | 40k         | 38059,0                                        | 525                                       |
| tbtb        | 0,7      | 20k         | 28571,4                                        | 350                                       |
| ZZ          | 45,12    | 50k         | 1108,2                                         | 22560                                     |
| nntt        | 0,141327 | 20k         | 141515,8                                       | 70                                        |
| wwz         | 35,3     | 130k        | 3682,7                                         | 17650                                     |
| wtb         | 16,8     | 200k        | 2976,2                                         | 8400                                      |
| eezz        | 0,287    | 10k         | 34843,2                                        | 143                                       |
| nnww        | 3,627    | 30k         | 8271,3                                         | 1813                                      |
| evzw        | 10,094   | 60k         | 5944,1                                         | 5047                                      |
| nnzz        | 1,08257  | 20k         | 18474,6                                        | 541                                       |
| ttZ         | 0,6975   | 20k         | 28673,8                                        | 541                                       |



D. BOUMEDIENE | Higgs self coupling | LCWS

ilr

İİL



### Signal : 3 channels

∽ hhqq

İİL

- 6 jets
- m<sub>h</sub> & m<sub>Z</sub>
- ∿ hhvv
  - 4 jets
  - missing energy
  - M<sub>h</sub>

### ∽ hhll

- 4 jets
- 2 energetic leptons
- m<sub>z</sub> & m<sub>h</sub>

- Each event is reconstructed
  - Sin 6 jets
  - └→ in 4 jets
  - in 2 jets
- Jet pairing based on di-jet masses associated to bosons
  - └→ Jets combined in pairs in order to test different final states
  - └→ hhZ, hh(vv), ZZZ, ZZ, WWZ
  - $\stackrel{r}{\rightarrow}$  For each event
    - $\chi^2_{hhZ} = (m_{12} m_h)^2 / \sigma^2_h + (m_{34} m_h)^2 / \sigma^2_h + (m_{45} m_Z)^2 / \sigma^2_Z$
    - $\chi^2_{ZZ} = (m_{12} m_h)^2 / \sigma^2_Z + (m_{34} m_Z)^2 / \sigma^2_Z$



- Use the b flavor signature to reduce the background
- Global variable (crude approach)
  - Settimator of # of « b jets » per event taking into account de c and uds contamination (parametrisation of a given VDET)







## Event preselection

- Minimal b flavored content
  - Sevent by event basis
- Visible energy
- 2 isolated leptons in a mass window of 25 GeV around m<sub>z</sub>

| Selection | Evis     | b content | 2 Isoltd lept |
|-----------|----------|-----------|---------------|
| hhqq      | >370 GeV | > 3.6     | No            |
| hhvv      | <370 GeV | >1.8      | No            |
| hhll      | >370 GeV | >1.8      | Yes           |



Ô

01/06/2007



Multivariable Method

ilr

ΪįĹ

- <sup>℃</sup>→ Global inputs :
  - Visible energy
  - Sphericity

### <sup>™</sup> Reconstructed inputs :

- Number of jets (y<sub>cut</sub>)
- $\chi^2_{hhZ} \chi^2_{hh} \chi^2_{2-bosons} \chi^2_{3-bosons}$  : hypothesis based on reconstructed masses













D. BOUMEDIENE | Higgs self coupling | LCWS

# if expected number of events at $L = 2 \text{ ab}^{1}$

- Channel hhqq
  - <sup>℃</sup>→ Signal : 67.3
  - <sup>℃</sup>→ Background : 93
    - tt 9.2
    - tbtb 37.
    - ZZZ 16.4
    - ttZ 18.8
- Channel hhvv
  - <sup>℃</sup>→ Signal : 20
  - <sup>C→</sup> Background : 14.6
    - ZZ 2.4
    - tbtb 6.8
- Channel hhll
  - <sup>с</sup>→ Signal 10.3
  - <sup>t</sup>→ Background : 26.8

Significance = 6.6 σ



## Heasurement of the cross section and IIL OF the hhh coupling

- σ<sub>hhZ</sub> is measured using a maximum likelihood method and assuming a Poisson law distribution for the NN output x btag
- The 2 dimensional distribution is fitted : NN Output X b-tag
- The pseudo experiments method is used to evaluate the expected statistical error
- For  $\varepsilon_b = 90\%$  and pflow  $30\% : \Delta \lambda_{hhh} / \lambda_{hhh} = 16\%$  (@ 500GeV  $\Delta \sigma_{hhh} / \sigma_{hhh} = 9\%$  L = 2ab<sup>-1</sup>)
- The observed contribution of the various channels to the measurement :
  - <sup>⊾</sup> hhqq 40%
  - <sup>⊾</sup> hhvv 25%

<sup>5</sup>→ hhll 34%



## Jet charge can help ...

- Definition of the jet charge (Ch<sub>j</sub>):
  - <sup>∨</sup> For a jet j : Ch<sub>j</sub>=Σ q<sub>i</sub> w<sub>i</sub> / Σ w<sub>i</sub> where q<sub>i</sub> is the charge of the particle i
  - $\rightarrow$  w<sub>i</sub>=√(p<sub>i</sub>.e<sub>j</sub>) p<sub>i</sub> is the particle's momentum, e<sub>j</sub> the jet direction
- Boson charge = sum of the charges of the two jets
- For a given event, definition of a  $\chi^2$

$$\chi^2 = (Ch_{h1})^2/\sigma^2 + (Ch_{h2})^2/\sigma^2 + (Ch_Z)^2/\sigma^2$$

It should improve the hhZ selection





15

İİ

## Impact of the detector performance

Move from a realistic fast sim to a smearing of the visible energy of partons

### Simulation of different Particle flow resolutions

### └→ Information at parton level

- Merge all the daughter (except v's) of the quark in one object
- BUT it cannot be done formally because of the string model
- Method : clusterise of the daughters to form the parton direction
- Smear the reconstructed parton to simulate the jets
- An optimistic approach for bad particle flow resolutions

### <sup>™</sup> Smearing of parton energy

- Range :  $0\%/\sqrt{E} \rightarrow 130\%/\sqrt{E}$ 
  - └→ perfect particle flow

### <sup>™</sup> Jet pairing is changed (based on boson masses)

### λ<sub>hhh</sub> measurement

- → For each detector hypothesis :
  - New NN trained
  - Cuts fully optimized





This reduction corresponds to a reduction in the required luminosity by a factor 2 : without the particle flow information 4 ab<sup>-1</sup> are needed to reach 16% (optimistic)

This result valid for a given b-tag/c-tag and for an non-optimized ε<sub>b</sub> choice
 01/06/2007 D. BOUMEDIENE | Higgs self coupling | LCWS
 17



# ir Study of the detector performance

Simulation of different b-tag efficiencies

- ▷→ b-tag is defined statistically (from true jet flavor)
- └→ c-tag ↔ b-tag efficiencies respect the Hawkings parametrisation
  - Tested range :  $40\% \rightarrow 95\%$
  - For different pflow resolutions
- $\lambda_{hhh}$  measurement
  - <sup>⊂</sup>→ For each pflow resolution :
    - NN trained
    - Cuts optimized
    - 77 analyses are tested (for each combination pflow x btag)

## ir $\Delta\lambda_{hhh}/\lambda_{hhh}$ versus b-tag efficiency





# in Background sensitivity to the b-tag

- Which background is most sensitive to b-tag choice ?
   tt
- $tt \rightarrow WbWb \rightarrow bbccss$ 
  - └→ c-jets tagged as b-jets
     ↔ bbbbqq like final state
     ↔ hhZ like final state
  - Subbbqq is the hhZ flavor signature used in the selection





### ic $\Delta\lambda_{hhh}/\lambda_{hhh}$ versus b-tag and pflow

Expected statistical error (in %) for a luminosity of 2ab<sup>-1</sup>

For a given c-tag / b-tag parametrisation





# $\frac{\partial \lambda_{hhh}}{\partial \lambda_{hhh}}$ versus b-tag efficiency



23

01/06/2007

#### D. BOUMEDIENE | Higgs self coupling | LCWS

# ir btag purity ( c tagging)





- The expected statistical precision on  $\lambda_{hhh}$  is evaluated to 15% with a typical detector configuration and for a luminosity of 2ab<sup>-1</sup>
- A particle flow of 30%/VE reduces the necessary luminosity by at least a factor 2
- The b/c tag performance has an important effect and may be convoluted with Calorimeters
- The relation between clusterisation of the jets and pflow could be important and not completely treated yet.
- Obviously the analysis itself may be improved (e.g. by taking into account the jet charge)

