
Higgs Self Coupling Measurement

Tim BarklowTim Barklow
SLAC

June 1, 2007

1



e e ZHH qqbbbb+ − → →

2



Plan for Analyis
• Perform analysis on qqbbbb channel only at Ecm=500 GeV 

i 0% l t l i ti U l i F t MCassuming 0% electron polarization. Use org.lcsim Fast MC 
simulation of baseline SiD.  This MC includes a reasonable 
l ith f i h d t k l t dalgorithm for smearing charged track angles, curvature and 

impact parameters.  Calorimeter simulation consists of  
simple single ne tral particle smearing ith EM resol tionsimple single neutral particle smearing with EM resolution 
for photons and HAD res for n,K0L.

l i l i l l i l i• Scale single particle calorimeter resolutions to get a 
particular ΔEjet .

• Use org.lcsim ZVTOP for b-tagging
• Perform analysis both with and without final state gluon 
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radiation in signal and background evt generators.
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Drop constant term in single particle resolution for now.  Assume
negligible contribution from charged particles to 
jet energy resolution and write
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500 GeVs =
0.3c = 0.4c =

e e uu+ − →
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, 0.3,    non-Gaussian Parameterization
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ZHH Preselection
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btagNN
• Use udscb jets in ZHH events to train
• Perform jet analysis on charged and neutral objects 

g

btagNN
j y g j

allowing number of jets to vary; for each jet perform 
ZVTOP analysis as implemented in org.lcsim 
U h f ll i i bl i h b l• Use the following variables in the btag neural net:

jetE jet

vtxE
M
Pt-Corrected
# S d V ti

vtx

vtx

M
M

# Secondary Vertices
# Unassociated Large Impact Parameter Tracks 
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b jets

ZHH events

btagNN

udsc jets
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charm mis-id efficiency versus b-tag efficiency

R. Hawkings,  LC-PHSM-2000-021 SiD ZHH AnalysisSiD ZHH Analysis

,e e ZHH tt+ − →

500 GeVs =
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b-tag efficiency



OLD Neural Net ZHHNN
• Use signal and background events that pass preselection  to 

train ZHHNN
• Use the following variables in the ZHH neural net:
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2Old definition ZHHχ
• Force charged and neutral objects into 6 jets
• Loop over 45 jet-pair combinations & minimize 2

ZHHχp j p
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New approach:
Instead of variables 
such as whichχ

,ZZ ZH bbbb→ tt bbcsqq→

ZHHsuch as  , which
contain kinematic info
for 1 of 45 combinations,
f d l ll j i

χ

feed neural net all jet pair
masses where jets are 
ordered according to jet ZZZ bbqqqq→ ZZH bbqqqq→

btag neural net value 
(jet 1 is the most b-like, 
jet 2 is 2nd most b-like,jet 2 is 2nd most
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Jet pair masses where jets are ordered according to jet btag neural net value 

(jet 1 is the most b-like jet 2 is 2nd most b- Requirelike etc ) ( ) 3 5bNN j >∑
j=1

(jet 1 is the most b like,  jet 2 is 2nd most b Require like,etc. ) ( ) 3.5btagNN j >∑
ZHH
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6

Jet pair masses where jets are ordered according to jet btag neural net value 

(jet 1 is the most b-like jet 2 is 2nd most b- Requirelike etc ) ( ) 3 5bNN j >∑
j=1

(jet 1 is the most b like,  jet 2 is 2nd most b Require like,etc. ) ( ) 3.5btagNN j >∑
tt
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,ZZ ZH bbbb→ tt bbcsqq→Neural net based on
b-tag ordered jet pair
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w/o gluon rad

BR(H bb) 0 678
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,ZZ ZH bbbb→ tt bbcsqq→Neural net based on
b-tag ordered jet pair

2 2
HH tt

2 2
ZZH ZZZ

2 2

masses and ,  ,

,   (only 3 

b f

χ χ
χ χ

ZZZ bbqqqq→ ZZH bbqqqq→

2 2
HH ZZZ

2 2
tt ZZH

comb. for ,

only 6 comb. for , )

χ χ
χ χ

ZZZ bbqqqq→ ZZH bbqqqq→
QCD rad turned on

ZHH
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with gluon rad

BR(H bb) 0 678
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BR(H bb)=0 678→

with gluon rad
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Light quark jets ee→qq GLD-PFA
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Light quark jets ee→qq

GLD PFA LDC PFA FASTMC with 
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jet

jet

E
0.043  (see FASTMC plot on previous page)

E
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≈
j

M ,W ZM
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jet

jet

j j

E
Analysis must be redone with  that reflects current PFA status.
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Conclusions
Th th li i b t 32 % d 38%• The error on the coupling gHHH varies between 32 % and 38%  as 
the jet energy resolution is varied between 30% to 60% over 
sqrt(E) assuming no gluon radiation, Ecm=500 GeV, L=2000 fb-1 , 

d h fi l ZHH bbbbb Thi dand the final state ZHH qqbbbbb. This corresponds to an 
effective luminosity gain of 40% as the jet energy resolution is 
improved from 60% to 30% over sqrt(E). By increasing  
BR(H bb) from 0.687 to 0.853, and adding the contribution from 
ZHH llbbbb, this particular result replicates the TESLA TDR 
result. 

• When final state gluon radiation is switched on, the error on gHHH 
deteriorates to a range of 53 % to  62%  for jet energy resolutions 
between 30% to 60% over sqrt(E) This problem may be solvedbetween 30% to 60% over sqrt(E).   This problem may be solved 
with a more sophisticated jet algorithm and better b/c tagging.  
Note that we currently force reconstructed particles into 6 jets, 
which may not be the best approach in the presence of hard gluonwhich may not be the best approach in the presence of hard gluon 
radiation.  Better b/c tagging, as well as  b/bbar discrimination, 
can reduce combinatorics and provide b/c weighted jet energy 
corrections
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corrections.



Conclusions (cont.)

• Results from the study of the Higgs self coupling 
error versus jet energy resolution at Ecm=500 GeV j gy cm
do not reflect the ultimate precision on the Higgs 
self coupling In addition to improvement to theself coupling.  In addition to improvement to the 
analysis of ZHH qqbbbb, methods have and 

ill b d l d t l it th Hi dwill be developed to exploit other Higgs decay 
modes. Also, analysis at Ecm=1000 GeV will lead 
to a significant improvement.  A precision of 
10% can eventually be achieved when data at y
Ecm=500 GeV and 1000 GeV are combined.
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