Precision Measurement of the Stop Mass at the Linear Collider
 LCWS2007 \& ILC2007-SUSY- June 2-2007
 Desy- Hamburg

Caroline Milsténe
In Collaboration with
Ayres Freitas, Michael Schmitt, André Sopczak
Publication in Preparation

Introduction

- We have previously studied the light stop, with a small mass difference to the neutralino, in an attempt to understand EW baryogenesis the asymmetry matter anti-matter and its role in dark matter annihilation.
Phys. rev. D 72,115008(2005)
M. Carena, A. Finch, A. Freitas, C. Milstene, H. Nowak, A. Sopczak

The mass precision measurement reached was $\delta m \sim 1.2 \mathrm{GeV}$.
This analysis aims at the minimization of the systematics while using more realistic data, stop hadronization/fragmentation included.

- The precision is improved in two ways:
a/ The systematic uncertainties are minimized by measuring the production cross-section at two energies \rightarrow cancellations .
b/ The $2^{\text {nd }}$ energy point chosen at or close to the production energy threshold
\rightarrow increased sensitivity to mass changes.
- The stop hadronization is included at production \rightarrow the c quark energy is spread out in the process of hadronization.
the final number jets increases- the c-tagging is now a necessity to identify the charm jets (bench-marking for the vertex detector)
- Two approaches are used, a cut based analysis, a multi-parameters optimization analysis IDA
- The polarization improves further the.sidystaheto background ratio

Cross-Section Precision In Production

Cross-sections [fb] calculated using NLO In MC software by Freitas et al EPJ
C21(2001)361,
EPJ C34(2004)487

The Method

$$
\begin{aligned}
& \sigma=\frac{N-B}{\varepsilon L} \\
& Y\left(M_{x} \sqrt{s_{t h}}\right)=\frac{N_{t h}-B_{t h}}{N_{p k}-B_{p k}}=\frac{\sigma\left(\sqrt{s_{t h}}\right)}{\sigma\left(\sqrt{s_{p k}}\right)}
\end{aligned}
$$

σ the cross-section [fb]
N the number of selected data events
B number of estimated background events
s Square of the energy in center of Mass
$\mathrm{N}_{\mathrm{th}}, \mathrm{B}_{\mathrm{th}}, \mathrm{s}_{\mathrm{th}}$ at or close to production threshold
$\mathrm{N}_{\mathrm{pk}}, \mathrm{B}_{\mathrm{pk}}, \mathrm{S}_{\mathrm{pk}}$, at peak value
ε total efficiency \& acceptance
L Integrated luminosity
M_{x} : Mass to be determined with high precision.
Y ratio of cross-section σ_{th} and $\sigma_{\mathrm{pk}} \rightarrow$ Allows Reduction of systematic uncertainty as well as uncertainties from L measurement.
Remark: yield close to threshold is very sensitive to $M_{x} \rightarrow$ choice of $N_{t h}$ and $B_{\text {th .. }}$
C. Milsténe

Determination of the Stop Mass

$Y=f\left(M_{x}\right)$ from the theoretical cross-section is be drawn in Red
Y from the data the blue line.
As an example, Assume 2\% precision for Y , The blue hashed region \rightarrow one obtains \rightarrow Precision $\Delta M_{x}= \pm 1 \%$, the 2 vertical arrows

The Scenario depicted:
$\mathrm{E}_{\mathrm{CM}}=260 \mathrm{GeV}$ with $\sigma=9.2 \mathrm{fb}$ and $\sigma=77 \mathrm{fb}$ at peak

Remark: Assumed luminosities
$\mathrm{L}_{\mathrm{th}}=50 \mathrm{fb}^{-1}(260 \mathrm{GeV}), \mathrm{L}_{\mathrm{pk}}=500 \mathrm{fb}^{-1}(500 \mathrm{GeV})$

$$
e^{+} e^{-} \rightarrow \widetilde{t_{1} t_{1}} \rightarrow c \tilde{\chi}_{0}^{-} \bar{c} \tilde{\chi}_{0}^{1}
$$

-Analysis uses N -tuple tool incorporating jet finding algorithm (T. Kuhl)
-Soft Multi-jets in the final state
-Stop Hadronization \rightarrow the final state jets smeared :
due to gluon radiation + fragmentation
-At ECM=260 GeV mostly 2 jets, carry the charm.
-At ECM $=500 \mathrm{GeV}$ 2jets $\rightarrow 2,3,4$ jets (more energy available in the CM)
\rightarrow the Charm tagging a necessary tool to identify the charm jets (Vertex bench-marking)

Simulation Characteristics

- Signal and Background generated with: Pythia (6.129) Simdet (4-0-3)- Circe(1.0)
- Hadronisation of the c quark and the \tilde{t} from the Lund string fragmentation Pythia uses Peterson fragmentation
(Peterson et al PR D27:105)
- The t fragmentation is simulated using Torbjorn code
/http://wwwthep.lu.se/torborn/pythia/main73 f
The \check{t}_{1} quark is set stable until after fragmentation where it is
Allowed to decay again as described in (Kraan, EPJ C37:91)
- Signal and Background are generated in each channel for the given luminosity in conjunction to the cross-sections

Jet Multiplicity - Without/With Fragmentation

- Stop fragmentation simulated using Torbjorn code //http://www.thep.Iu.seftorbiorn/pythia/mai n73.f
-The stop fragmentation parameter is set relative to the bottom fragmentation parameter
$\tilde{\varepsilon}=\varepsilon_{-} b^{*} m_{b}{ }^{2 / / / \tilde{t}^{2}}$
And $\varepsilon _b=-0.0050+1-0.0015$ following (OPAL,EPJ C6:225)
-The jet Multiplicity without Fragmentation
Upper figure
~ 70\% 2 jets
-The jet Multiplicity with t Fragmentation
Lower Figure
~ 50\% 3 jets
\& bigger admixture of 4jets

Background- Channels @500 GeV

Z Phys. C 76 (1997) 549- A.Bartl, H. Eberl,S. Kraml, W.Majerotto,W.Porod,A. Sopczak

The cross-sections

Process	$\sigma[\mathrm{pb}]$ at ECM=260GeV			$\sigma[\mathrm{pb}]$ at ECM=500GeV		
$\mathrm{P}(\mathrm{e}-) / \mathrm{P}(\mathrm{e}+)$	$0 / 0$	$-80 \% /+60 \%$	$+80 \% /-60 \%$	$0 / 0$	$-80 \% /+60 \%$	$+80 \% /-60 \%$
$\tilde{\mathrm{t}}_{1} \tilde{\mathrm{t}}_{1}{ }^{*}$	0.032	0.017	0.077	0.118	0.072	0.276
W W	16.9	48.6	1.77	8.6	24.5	0.77
Z Z	1.12	2.28	0.99	0.49	1.02	0.44
Wenu	1.73	3.04	0.50	6.14	10.6	1.82
eeZ	5.1	6.0	4.3	7.5	8.5	6.2
qq, qq $\neq \mathrm{tt}$	49.5	92.7	53.1	13.1	25.4	14.9
tt	0.0	0.0	0.0	0.55	1.13	0.50
$2 \mathrm{y}\left(\mathrm{p}_{\mathrm{t}}>5 \mathrm{GeV}\right)$	786			936		

Table 1
A. Freitas et al EPJ C21(2001)361, EPJ C34(2004)487 and GRACE and COMPHEP -Next to leading order, assuming a stop mixing angle (0.01)
C. Milsténe

Selection Cuts at $\mathrm{E}_{\mathrm{Cm}}=260,500 \mathrm{GeV}$

Variable	$\begin{gathered} \mathrm{ECM} \\ 260 \mathrm{GeV} \end{gathered}$	$\begin{gathered} \mathrm{ECM} \\ 500 \mathrm{GeV} \end{gathered}$
Number of jets	$\mathrm{N}_{\text {jets }}=2$	$\begin{gathered} \mathrm{N}_{\text {jets }} \geq 2 \& \mathrm{E}_{\mathrm{n}}<25 \mathrm{GeV} \\ \mathrm{n}=3,4, . . \end{gathered}$
Transverse Momentum p_{t} Thrust T $\cos \theta_{\text {Thrust }}$ Visible Energy $\mathrm{E}_{\text {vis }}$ Acoplanarity $\Phi_{\text {acop }}$ Invariant mass of jet pair m_{j} Charm tagging likelihood P_{c}	$\begin{aligned} & \mathrm{p}_{\mathrm{t}}>10 \mathrm{GeV} \\ & - \\ & \left\|\cos \theta_{\text {Thrust }}\right\|<0.7 \\ & \mathrm{E}_{\text {vis }}<0.175 \text { *ECM } \\ & \left\|\Phi_{\text {acop }}\right\|<0.9 \\ & 25.5 \mathrm{GeV}<\mathrm{m}_{\mathrm{jj}}<90 \mathrm{GeV} \\ & \mathrm{P}_{\mathrm{c}}>40 \% \end{aligned}$	$\begin{aligned} & \mathrm{p}_{\mathrm{t}}>12 \mathrm{GeV} \\ & \mathrm{~T}>0.8 \\ & \left\|\cos \theta_{\text {Thrust }}\right\|<0.7 \\ & \mathrm{E}_{\text {vis }}<0.4 \text { *ECM } \\ & \left\|\Phi_{\text {acop }}\right\|<0.9 \\ & 60 \mathrm{GeV}<\mathrm{m}_{\mathrm{jj}}<90 \mathrm{GeV} \\ & \mathrm{P}_{\mathrm{c}}>40 \% \end{aligned}$

Table 2
In order to optimize the cancellation of the systematics we aim to have a selection as similar as possible at the two energies. (cancellation in Y)
The two-photons background did require a 5 GeV pt cut.

Events Generated and After Sequential cuts

	$\mathrm{L}=50 \mathrm{fb}^{-1}$ at ECM=260GeV			$\mathrm{L}=500 \mathrm{fb}^{-1}$ at $\mathrm{ECM}=500 \mathrm{GeV}$		
$\mathrm{P}(\mathrm{e}-) / \mathrm{P}(\mathrm{e}+)$	Generated	$0 / 0$	$+80 \% /-60 \%$	Generated	$0 / 0$	$+80 \% /-60 \%$
$\tilde{\mathrm{t}}_{1} \tilde{\mathrm{t}}_{1}{ }^{*}$	50000	382	921 (24\%eff.)	50000	11300	26430 (19\%eff.)
WW	180000	<5	<1	210000	102	9
ZZ	30000	<2	<2	30000	250	224
Wenu	210000	36	4	210000	10102	2994
eeZ	210000	<1	<1	210000	<18	<15
qq, qұt	350000	<7	<8	350000	19	22
tt	-	0	0	180000	21	19
2-Photons	1.610^{6}	12	12	8.5×10^{6}	120	120

Table 3
0/0 polarization beam \rightarrow Unambiguous discovery $+80 \% /-60 \%$ polarization \rightarrow Precision Measurement
Remark: $\tilde{\mathrm{t}}_{1}$ fragmentation \rightarrow the separation from the Wenu more difficult

Iterative Discriminant Analysis (IDA)

- Improves even more the precision in the $\tilde{\mathrm{t}}_{1}$ mass measurement an Iterative Discriminant Analysis (IDA) is used. (modified Fisher Disc. Analysis) - IDA combines the kinematic variables in parallel. The same variables and simulated events are used than in the cut based analysis. A non linear discriminant function followed by iterations are enhancing the separation between signal and background.
- Both the signal and background have been divided in two equally sized samples, one sample is used for training, the other as data.
- Two IDA steps have been performed, with a cut after the $1^{\text {st }}$ IDA iteration keeping 99% of the signal efficiency.
- The performance is shown in the two next figures at 260 and 500 GeV .

Invariant Mass Di-Jets Before Final IDA

IDA Performance

C. Milsténe

Events Generated and After IDA Selection

	$\mathrm{L}=50 \mathrm{fb}^{-1}$ at $\mathrm{ECM}=260 \mathrm{GeV}$			$\mathrm{L}=500 \mathrm{fb}^{-1}$ at $\mathrm{ECM}=500 \mathrm{GeV}$		
$\mathrm{P}(\mathrm{e}-) / \mathrm{P}(\mathrm{e}+$)		+80\%/-6		0/0	+80\%/-60\%	
$\tilde{\mathrm{t}}_{1} \tilde{\mathrm{t}}_{1}{ }^{\text {r }}$	610	1470	(38\%eff.)	21240	49700	(36\%eff.)
WW	19	2		<41	<4	
zZ	7	7		67	60	
Wenu	68	39		10640	3155	
eeZ	10	8		<36	<30	
qq, q\#\#	30	32		<38	<43	
tt	0	0		<3	<3	
2-Photons	<25	<25		840	840	

Table 4
The efficiencies improves from $24 \%, 19 \%$ cut based $\rightarrow 38 \%, 36 \%$ IDA, while the background is of the same order of magnitude.

Systematic Uncertainty in Kinematics Cuts Variables

Variable	Error on variable	Error on Y
p_{t}	2%	0.28%
$\cos \theta_{\text {Thrust }}$	1.8%	0.18%
$\mathrm{E}_{\text {vis }}$	2%	0
$\Phi_{\text {acop }}$	1%	0.08%
$\mathrm{~m}_{\mathrm{jj}}$	4%	0.61%

Table 5
-All cuts are applied to hadronic and jet observables \rightarrow Calibration quantities are jet energy scale \& jet angle.
-Based on LEP, we assume 2% calibration error for jets, 1 deg for jet angle -Effect on signal efficiency: Partial cancellation between 260 and 500 GeV -We assume cancellation in total luminosity in Y between $260 \& 500 \mathrm{GeV}$

Effect of Stop and Charm Fragmentation

Comparison of the signal generated with and without gluon radiation
\rightarrow The signal efficiency changes due to jet number cut is 2.5%
\rightarrow We assume an error of 1% for the number of jets
Charm fragmentation parameters assumed as precise as for LEP/OPAL
$\rightarrow \varepsilon_{\mathrm{c}}=-0.0031 \pm 0.011$

$\varepsilon_{\mathfrak{t} 1}=-0.0050 \pm 0.015$
They don't cancel between the 2 energies but are small
Including the effects of the fragmentation at both energy points
$\delta \varepsilon_{c}= \pm 35 \% \rightarrow$ Error $\delta Y=+1.2 \%-0.2 \%$
$\delta \varepsilon_{\mathfrak{t} 1}= \pm 30 \% \rightarrow$ Error $\delta Y=+0.4 \%+2.4 \%$
\rightarrow contribute an error O(few\%)

Theoretical Uncertainties

- Precise cross-section calculations are needed
- Stop production receive large corrections from QCD gluon exchange Between the final state stops (bigger @Threshold) \rightarrow Coulomb corr.
- NLO- QCD corrections ~100\% @threshold down to 10% at high energies are included here
- NNLO-QCD corrections are expected to be same order than NLO based on the results for the top quark. The missing higher order correction ~7\% @260GeV, 2.5\% @500 GeV
- It is expected that theoretical uncertainties can be brought down by a factor 2
- Here we assume an uncertainty of 3.5% @ 260 GeV and 1% @ 500 GeV
- The EW corrections : NLO ~several \%, the NNLO ~1\%
- Combined \rightarrow ~4\% @260 GeV and 1.5\% @500GeV $\rightarrow \delta Y=5.5 \%$

Combined Statistic and systematic Errors

Error source for Y	Cut-based Analysis
Statistical	4.1%
Detector Effects	1.15%
Jet number	1%
Charm Fragmentation	1.2%
Stop Fragmentation	2.4%
Charm tagging algorithm	$<0.5 \%$
Sum of Experimental	5.2%
Errors	
Theory for signal σ	5.5%
Theory for background σ	0.5%
Total error δY	7.2%

For IDA the determination of systematic uncertainties in progress.

Table 6

Results

Combining the statistical and systematic errors Table 6(*)
$\delta Y=7.2 \% \rightarrow \delta m_{\mathfrak{t} 1} \sim 0.3 \mathrm{GeV}-$ a factor 4 better (Phys. rev. D 72,115008(2005) (dominated by the theory, expected to improve for signal and background) $\delta Y=5.2 \% \rightarrow \delta m_{\mathfrak{t} 1} \sim 0.2 \mathrm{GeV}$ (cut based experimental errors alone) $\delta \mathrm{Y}=4.2 \% \rightarrow \delta \mathrm{~m}_{\mathfrak{t} 1} \sim 0.15 \mathrm{GeV}$ (experimental errors \& IDA) (expected)
\rightarrow Improvements in dark matter relic density due to improvement in $\delta m_{\mathfrak{t} 1}$ is shown in the next figure.
Other limiting factors start to interplay, e.g. the precision on the neutralino mass $\delta \mathrm{m}_{\mathrm{x} 0}{ }^{1} \sim 0.3 \mathrm{GeV}$,(hep-ph/0608255, M.Carena, A.Freitas)

Dark Matter Relic Abundance $=\mathrm{f}\left(\mathrm{m}_{\text {stop }}\right)$

Dark Matter relic density accounting The estimated experimental errors For stop, Chargino, neutralino and Higgs sector -(scan over 1 σ) versus $\mathrm{m}_{\mathrm{st}}{ }^{1}$ for $\delta m_{\mathfrak{t} 1}=1.2 \mathrm{GeV}$ light gray dot Previous study $\delta m_{\mathfrak{t} 1}=0.3 \mathrm{GeV}$ dark gray dot Now this study $\delta m_{\mathfrak{t} 1}=0.15 \mathrm{GeV}$ black dots Expected this study with IDA

$$
\begin{aligned}
& \delta \mathrm{m}_{\mathrm{st}}{ }^{1}=0.3 \mathrm{GeV} \rightarrow \Omega_{\mathrm{CDM}} \mathrm{~h}^{2}=0.109+0.0013-0.010 \\
& \delta \mathrm{~m}_{\mathrm{st}}=0.2 \mathrm{GeV} \rightarrow \Omega_{\mathrm{CDM}} \mathrm{~h}^{2}=0.109+0.0012-0.009 \\
& \delta \mathrm{~m}_{\mathrm{st}}=0.15 \mathrm{GeV} \rightarrow \Omega_{\mathrm{CDM}} \mathrm{~h}^{2}=0.109+0.0011-0.009
\end{aligned}
$$

Relic Abundance as Function of $\mathrm{m}_{\mathrm{x} 0}{ }^{1}$

Dark Matter relic density as a function of the neutralino mass accounting for the estimated experimental errors as before but as function of the
Lightest neutralino mass $\mathrm{m}_{\mathrm{xo}}{ }^{1}$ Gray dots for $\delta m_{\mathfrak{t} 1}=0.3$ This study Errors from Experiment+theory Black dots for $\delta m_{\mathfrak{t} 1}=0.15$ This Study Experiment. Err. and IDA
$\delta m s t 1=0.3 \mathrm{GeV} \rightarrow \Omega_{\mathrm{CDM}} \mathrm{h}^{2}=0.109+0.0013-0.010$
$\delta m s t 1=0.15 \mathrm{GeV} \rightarrow \Omega_{\mathrm{CDM}} \mathrm{h}^{2}=0.109+0.0011-0.009$
WMAP: $\Omega_{\mathrm{CDM}} \mathrm{h}^{2}=0.1106+0.0056-0.0075$

Conclusion

- More realistic data were produced including hadronization/fragmentation
- The precision, however, improved by a factor three on our previous analysis with $\delta m_{\mathrm{st}}{ }^{1}=0.3 \mathrm{GeV}$.
- This method could be applied to other particles e.g. to measure the Higgs mass
- The method improves the precision to the mass determination in two ways $\mathrm{a} /$ by reducing the systematics in Y -cancellation between the two energy points. $\mathrm{b} /$ by choosing the energy at threshold, Y extremely sensitive to the mass
- The polarization separates the right-handed signal $\tilde{\mathfrak{t}}_{1}$ from background.
- Due to hadronization and fragmentation the c-tagging was a necessary tool to identify the charm jets at $\mathrm{E}_{\mathrm{CM}}=500 \mathrm{GeV}$ (benchmark for the vertex detector)
- Systematics in progress for the IDA a multi-parameters analysis, expected improvement to $\delta \mathrm{m}_{\mathrm{st}}{ }^{1}=0.15 \mathrm{GeV}$
- Progress in the theoretical calculations is expected and partly accounted for
- With that precision we become limited by other factors.
- With this mass precision, the calculated relic density is in accordance with WMAP and SLOAN ,
$\delta \mathrm{mst} 1=0.15 \mathrm{GeV} \rightarrow \Omega \mathrm{CDM} \mathrm{h} 2=0.109+0.0011-0.009$
WMAP: Ω CDM h $2=0.1106+0.0056-0.0075$
C. Milsténe

Backup slides

A Sample Parameter Point

- $\mathrm{m}_{\mathrm{U3}^{2}}{ }^{2}=-99^{2} \mathrm{GeV}^{2}$
- $A_{t}=-1050 \mathrm{GeV}$
- $\mathrm{M}_{1}=112.6 \mathrm{GeV}$
- $M_{2}=225 \mathrm{GeV}$
- $|\mu|=320 \mathrm{GeV}$
- $\Phi \mu=0.2$
- $\tan \beta=5$

Which gives:
$\tilde{m i}_{1}=122.5 \mathrm{GeV} ; \tilde{\mathrm{mt}}_{2}=4203 \mathrm{GeV}$;
$m \tilde{x}_{1}^{0}=107.2 \mathrm{GeV} ; \mathrm{m} \tilde{\mathrm{x}}_{1}{ }^{+}=194.3 \mathrm{GeV} ; m \tilde{x}_{2}{ }^{0}=196.1 \mathrm{GeV}$
$m \tilde{x}_{3}{ }^{0}=325.0 \mathrm{GeV} ; \quad \mathrm{m} \tilde{x}_{2}{ }^{+}=359.3 \mathrm{GeV}$
$\cos \theta \tilde{t}=0.0105 \sim \tilde{t}$ right handed
$\rightarrow \Delta \mathrm{m}=15.2 \mathrm{GeV}$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.

