

... for a brighter future

ILC Positron Production and Capturing Studies: Update

Wei Gai, Wanming Liu and Kwang-Je Kim

ILC GDE Meeting DESY May 30 – Jun2, 2007

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Work performed for the ILC e+ collaboration (SLAC, LLNL, RAL, CCRL, Cornell, KEK)

Outline

- 1. Undulator Based Scheme with OMD Simulation Update
- 2. Spinning target in the OMD field and beam dynamics.
- 3. Alternative Approaches Toward Beam Capturing Studies:
 - Quarter Wave Transformer
 - Lithium Lens
- 4. Summary

1. The Undulator Based ILC e+ system Simulation Update

Positron yields from different undulator parameters

	BCD	UK I	UK II	UK III	Cornell I	Cornell II	Cornell III
Period (mm)	10.0	11.5	11.0	10.5	10.0	12.0	7
K	1.00	0.92	0.79	0.64	0.42	0.72	0.3
Field on Axis (T)	1.07	0.86	0.77	0.65	0.45	0.64	0.46
Beam aperture (mm)	Not Defined	5.85	5.85	5.85	8.00	8.00	
First Harmonic Energy (MeV)	10.7	10.1	12.0	14.4	18.2	11.7	28
Yield(Low Pol, 10m drift)	~2.4	~1.37	~1.12	~0.86	~0.39	~0.75	~0.54
Yield(Low Pol, 500m drift)	~2.13	~1.28	~1.08	~0.83	~0.39	~0.7	~0.54
Yield(60% Pol)	~1.1	~0.7	~0.66	~0.53	~0.32	~0.49	~0.44

Target: 1.42cm thick Titanium

AT 5 GeV beam energy

Initial Polarization of Positron beam at Target exit(K=0.92 λu =1.15)

Initial Pol. Vs Energy of Captured Positron Beam

Yield contribution from different harmonics

The contribution from harmonics will change with the length of drift between undulator and target. The result showing here is when drift length at ~ 100 m.

For longer drift, the contribution from 1st harmonic will increase and contribution from high order harmonics will decrease.

Non-immersed/Partially Immersed Target

- For cases with non-immersed target, the yield varies with the ramp length d.
- For Partially immersed target, the yield also varies with the Bz at z=0.

Since the dragging force exerted on target is proportional to Bz^2 on the target, a partially immersed target can lower the power requirement on driving the target while maintaining a reasonable yield.

Normalized Yield as a Function of the Ramp Length

We would like to have the ramp as short as possible to minimize the lost of yield

2. Spinning target in the OMD field and beam dynamics.

Argonn

Bx and By components, a deflection force on the beam.

 $\operatorname{Color} - B_{v}$ Arrows $\{B_x, B_y\}$ The level of transverse (to the beam) components is one order lower than the *z*component Plotted 5mm from the surface of the target at 980rpms

Frequency study of total field

Initial x-x' of captured positrons

Without induced field

With induced field

Induced field kicked some positrons out but also kicked some in. The lost of yield is only ~5% (from ~1.27 down to ~1.20) for conductivity of 3e6. No noticeable changes in e+ yield for target with conductivity of 1.5e6. Sine the titanium alloy has a conductivity of 0.56e6, so from beam dynamic point of view, the eddy current has no noticeable effect.

3.a. Quarter wave transformer simulation

a short lens with a high magnetic field and a long solenoidal magnetic field.

Field profile of quarter wave transformer

Magnetic field profile: Superposition of two field maps.

On axis Bz profile

Conditions and assumptions

- Combine the field maps and then do beam dynamic simulation using PARMELA. Tracking e+ up to ~125MeV
- B field is fixed at 0.5T after quarter wave transformer.
- The first Linac section starts at 20cm as in RDR.
- The longitudinal center of target is the center between focusing and bucking solenoids.
- The capture efficiency is calculated at end of the TAP, ~125MeV, using phase cut +/- 7.5 degrees, Energy cut 50MeV. For reference, the capture efficiency calculated using same cut for case with OMD as 5T-0.5 in 20cm, we have ~35% for immersed case and ~26% for non-immersed case

Capture efficiency as function of length of focusing solenoid. Max B field on axis is ~1T. Gap between bucking and focusing is at 2cm. Separation between focusing and matching is 0.

Capture as function of focusing field

19

Capture efficiency with only 0.5T background solenoid

3.b. Schematic Layout and Conditions for Lithium Lens Simulation

Target: 0.4 rl, Ti and W23Re Undulator compared :

 $K=0.92, \lambda u=1.15$

K=0.3, λu=0.7

Yield and capture efficiency were calculated at ~125MeV Gradient and aperture of linac are in comply with RDR

Variables are length and driving current of lithium lens.

3. b. Capturing Study Using Lithium Lens

Yield calculated at ~125MeV as a Function of the Length of Lithium Lens

Num.of Electrons in the 150GeV drive beam Passing through a 100m undulator

Capture Efficiency Calculated at ~125MeV as a Function of the Length of Lithium Lens

Length of Lithium Lens(cm)

5

maximize it's yield. For other two

 $Capture Efficiency = \frac{Num. of \ positons \ in \ capturing \ window}{Num. of \ positron \ came \ off \ the \ target} \times 100$

15

0

10

Summary

Systematic e+ capturing studies performed. Various options considered.

Will integrate these studies into the EDR works.

Thank you.

