

Tracking Strategy for SiD

Tracking Review ILC Detector R&D Panel Feb. 4-8, 2007, Beijing Marcel Demarteau Fermilab

For the SiD Tracking Group

ILC Physics Characteristics

- Machine design luminosity $\mathcal{L} = 2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} (\sqrt{\text{s}} = 500 \text{ GeV})$
- Processes through s-channel spin-1 exchange: $\sigma \sim 1/s$
 - Cross sections relatively democratic
 - Cross sections are small
 - Angular distribution: $(1 + \cos^2\theta)$
 - Premium on forward region
 - Hermetic detectors
 - Relatively large backgrounds
 - 100k e⁺e⁻ pairs per bunch crossing
- W and Z bosons in all decay modes become the main objects to reconstruct
 - Discriminate W and Z in hadronic decay mode
- Highly polarized e⁻ beam: ~ 80%
 - To employ discriminating power requires running at both polarities
- Every event counts !

■ Highly polarized e⁻ beam: ~ 80%

$$\frac{d\sigma_{f\bar{f}}}{d\cos\theta} = \frac{3}{8}\sigma_{f\bar{f}}^{tot} \left[(1 - \mathcal{P}_e \mathcal{A}_e)(1 + \cos^2\vartheta) + 2(\mathcal{A}_e - \mathcal{P}_e)\mathcal{A}_f \cos\vartheta \right]$$

$$A_{f} = \frac{2g_{Vf}g_{Af}}{g_{Vf}^{2} + g_{Af}^{2}} \qquad A_{b} = 0.94 \quad A_{c} = 0.67 \quad A_{l} = 0.15$$

- Analyzing power of
 - Scan in center of mass energy
 - Various unique Asymmetries
 - Forward-backward asymmetry
 - Left-Right Asymmetry
 - Example: Model with extra dimensions
 - Coupling of graviton in 4-dimensions proportional to $\lambda/M_{\ D}^4$
 - Largest effects for b-quarks
 - $\sqrt{s} = 500 \text{ GeV}, \text{ M}_{\text{D}} = 2 \text{ TeV}$
 - $P_e = 0.8$, $L = 1 \text{ ab}^{-1}$
 - Sensitivity is in the far backward region
 - No sensitivity for leptonic final states ($A_e = 0.15$)
- Hermetic detectors with uniform strengths
 - Importance of forward regions
 - b/c tagging and quark identification in forward region

Center of mass energy requirements 2250 2000 1750 • Top mass: 200 ppm (ΔM_t =35 Mev) • Higgs mass: 200 ppm (ΔM_{H} =60 MeV; m_H=120 GeV) Giga-Z program: 50 ppm 1500 • Determine E_{CM} from $e^+e^- \rightarrow \mu^+\mu^-\gamma$ 1250 • $e^+e^- \rightarrow \mu^+\mu^-\gamma$ at $\sqrt{s} = 350 \text{ GeV}, \mathcal{L} = 100 \text{ fb}^{-1}$ 1000 750 Events predominantly forward 500 Determination of the Luminosity spectrum 250 top-quark pair production threshold scan E vents 12000 σ **[pb]** default +beam spread # 0.8 +beamstrahlung 8000 +ISR 0.6 6000 0.4 $e^+e^- \rightarrow t\bar{t}$ 4000 0.2 2000 330 335 340 345 350 355 360 √s [GeV]

Tim Barklow $\sqrt{s} = 350 \text{ GeV}$ $\sqrt{s} = 350 \text{ GeV}$ $\sqrt{s} =$

Momentum resolution parametrization

BR(H→μ⁺μ⁻)

- $e^+e^- \rightarrow v_e \overline{v}_e H \rightarrow v_e \overline{v}_e \mu^+ \mu^-$ at $\sqrt{s} = 1 TeV, \mathcal{L} = 1000 \, fb^{-1}$
- Angular distribution follows
 ~ 1+cos(θ)
- Determine error on the branching ratio as function of momentum resolution parameters
- Surprising dependence on constant term in the presolution
- Low mass device needed over full angular coverage

- Selectron pair production at $\sqrt{s} = 1$ TeV
 - $m_{\tilde{e}} = 143 \, GeV$, $m_{\tilde{\chi}} = 96.1 \, GeV$, $P_{e^-} = 80\%$

Delta(m) (GeV)

- Angular distribution follows 1+cos(θ)
- Selectron mass determination from Energy end-point spectrum
 - Benefits significantly from larger angular coverage
 - Benefits from improved momentum resolution

H

- Benchmark measurement is the measurement of the Higgs recoil mass in the channel e⁺e⁻ → ZH
 - Higgs recoil mass resolution improves until $\Delta p/p^2 \sim 2 \times 10^{-5}$
 - Sensitivity to invisible Higgs decays, and purity of recoil-tagged Higgs sample, improve accordingly.
 - Example:
 - √s = 300 GeV
 - 500 fb⁻¹
 - beam energy spread of 0.1%
 - Goal:
 - $\delta M_{II} < 0.1 x \Gamma_Z$
 - = $\delta M_{\rm H}$ dominated by beamstrahlung

е

- "At the ILC the initial state is well defined ..."
- Backgrounds from the IP
 - Disrupted beams
 - Extraction line losses
 - Beamstrahlung photons
 - e⁺e⁻ pairs
 - Backgrounds from the machine
 - Muon production at collimators
 - Synchrotron radiation
 - Neutrons from dumps, extraction lines

√s (GeV)	Beam	# e⁺e⁻ per BX	Total Energy (TeV)
500	Nominal	98 K	197
1000	Nominal	174 K	1042

- For beam current of I=2.8 10¹⁴ s⁻¹
 - 0.1% of particles hits spoiler
 - $< N_{\mu} > = 4.6 \text{ cm}^{-2} \text{ sec}^{-1}$, $< N_{\nu} > = 4.7 \text{ cm}^{-2} \text{ sec}^{-1}$
 - For 150 bunches, $\langle N\mu \rangle = 0.0489 \text{ cm}^{-2}$ or 8855 muons in the tunnel aperture
 - Alleviated by muon spoilers in tunnel
- Monte Carlo simulations have reached very good predictive power, but one ought to be prepared for the unexpected
- A silicon based tracker has single bunch timing resolution

- Material budget, especially in the forward region, is a major issue
 - Babar: 5 layers of double-sided Si
 - Stays below 4% at normal incidence traversing SVT; average of 0.8% X₀ per layer
 - But, significant amount of material (far too much) in forward region
 - LHC type detectors would be inadequate

- Many experiments have come up with quite different tracking strategies
 - What drives the determination of the tracking strategy?
 - What are the external constraints?

- Detector is conceived as an integrated detector
 - Vertex detector for track seeding and initial pattern recognition
 - Momentum measurement in tracker
 - Integration with calorimeter
- Detector design premises:
 - Expect best performance with uniform technology throughout the detector
 - Silicon and carbon fiber support allows for uniform transparency of the detector over full angular range (~0.8% X₀ per layer)
 - Silicon and carbon fiber support allows for easy optimization of the design
 - Silicon provides for superior momentum resolution 2 10⁻⁵ (GeV⁻¹)
 - Silicon provides for single bunch crossing timing
 - Robust against (unforeseen) beam backgrounds and beam induced backgrounds
 - Retains stand-alone tracking capability

- SiD tracker conceived as integral part of the full detector
- Basic premise is that a silicon based tracker is the most promising technology that can address the issues facing a linear collider detector
- The R&D that is needed for the design, and to further optimize it, will be covered in the subsequent talks
 - Mechanical Design and R&D
 - Sensor and Module Design and R&D
 - SiD-related University R&D

- Bill Cooper
- -- Tim Nelson
- -- Rich Partridge

- R&D Goals:
 - Establish feasibility of current design both mechanical, detector and readout
 - Develop and demonstrate feasibility of various approaches to tracker design
 - Optimize design with benchmark physics processes
- This review is a review of the tracker sub-system R&D only
 - The interplay between vertex detector, tracker, calorimeter and the implications of the tracker on, for example, particle flow calorimetry, is not quantified.