The SiD Tracker Module: R&D Status and Plans

SiD

SLAC

ILC Tracking R&D Review

Tim Nelson

BILCW07 - Beijing - February 6, 2007

 \ominus

The Silicon Dilemma

Asymptotic P_T resolution of silicon tracking is unmatched.

However, silicon places two critical requirements in opposition:

- Minimal material in tracking volume
- tracking throughout a large volume

Low-mass silicon detectors have been small, because they are...

- A able to implement expensive and labor-intensive designs on a small scale
- A able to keep readout and cooling material outside of limited tracking volume

Module Essentials

🔒 Sensor

🔒 Readout Chip

🔒 Hybrid

🔒 Cable

🔒 Support

🔒 Cooling

 \rightarrow

Module Essentials Redefined

🔒 Sensor

🔒 Readout Chip

🔒 Hybrid

🔒 Cable

🔒 Support

Cooling

 \ominus

T T T T T T T T

1

SiD Material Budget

components necessary for mechanical support, power supply and electronic readout. These three

Assumes solid barrel cylinders

Mass penalty for having a large number of readout channels drastically reduced.

Optimization

Finer readout granularity:

shorter strips

reduces background occupancy

improves pattern recognition

 \clubsuit increases S/N \rightarrow improves resolution

🔒 finer pitch

improves resolution

Barrel Module (Baseline)

Disk Module

Forward layout still in question:

- Simulation effort required to determine most advantageous strip orientation
- Module concept flexible enough to accommodate all eventualities
- Issues demanding full prototypes are independent of module shape
 - RF pickup from novel readout
 - industrial manufacture of support

Plan prototypes of both barrel and disk modules: two generations each

Module R&D

Components

Readout Chip - SLAC, UCSC, Brown U.

Sensor - SLAC, FNAL, Purdue, UNM, U. Tokyo

🔒 Cables - UNM, SLAC

Support & Mounting - SLAC, FNAL

Assembly - SLAC, UC Davis, FNAL

Power & DAQ - SLAC

Testing - SLAC, FNAL, UNM, Purdue

# II Task	Effort	Duration	2007	2008 2009 2010 201
 1) 6918 1.1) 691854-5 	147w 31w 1d	95w 27w 1d		
1.1.1) Design 1.1.2) Fabrication 1.1.2) Tabrication	11w 10 8w	8w		
 1.1.5 tening 1.2) KPIX128-5 1.2.1) Decise 	28w 4d	24w 44		
1.2.2) Fabrication 1.2.3) Testing	Bur 12m	8w Bw		
 1.3) KPIX1024-1 1.3.1) Design 	37w 11w	31w 11w	-	-
 1.3.21 Fabrication 1.3.31 Testing 	8w 18w	8w 12w		
 1.4) KPIX1024-2 1.4.1) Design 	SDw 24w	44av 24av		
 1.4.2) Fabrication 1.4.3) Testing 	8w 18w	Bw 12w		
 2) Barrel Modules 2.1) Sensors 	454w 34 6h 80w 4d 2h	100w 36 115w 36	F	
 2.1.3) Prototype 1 2.1.3.3) Design 	32w 4d 2h 2w 4d 2h	39w 4d 3w 4d	0	
 2.1.1.2) Fabrication 2.1.1.3) Testing 	24m 6m	24w 12w		
 2.1.2) Procetype 2 2.1.2.1) Design 	48w 18w	60w 24w		
 2.1.2.2) Fabrication 2.1.2.3) Testing 	24w Gw	24w 12w		
2.2) Cables 2.2.1) Pigsall Cables 1	76w 26w	107w 36 28w		
 2.2.1.11 Usign 2.2.1.21 Fabrication 	84	84		
2.2.2) Extension Cables 1 . 2.2.2.1) Design	26w	28w	_	
2.2.2.2) Fabrication 2.2.2.3) Testine	Bee for	Bw Bw		
 2.2.3) Pigtall Cables 2 2.2.3.1) Design 	26w 12w	28w 12w	_	
 2.2.3.2) Fabrication 2.2.3.3) Testing 	8w Gw	8w Bw		
 2.3) Module Support 2.3.1) Rapid Prototype 1 	116w 2d 8w 4d	112w 18w	-	
 2.3.3.1) Design 2.3.3.2) Fabrication 	200	8w 2w	-	
 2.3.1.3) Testing 2.3.2) Rapid Prototype 2 	tav 4d 18w 4d	8w 22w		
 2.3.2.11 Decigit 2.3.2.21 Fabrication 2.3.2.31 Zentre 	20	2w 8-	•	
2.3.31 Final Prototype 2.3.3.11 Desire	88w 46	72w 24w		
2.3.3.21 Module Frame Fabrication	24w	24w		
 2.3.3.31 Mounting Clip Fabrication 2.3.3.41 Testing 	24w 16w 4d	24w 24w		
2.4) Module Assembly 2.4.1) Fintures 1	179w 2d 4h 16w	114w 3d 36w		
tor rapid prototyp • 2.4.1.13 Finance Decign • 2.4.1.21	-	84	-	
EAPrication EAPrication 2.4.2) Bump Bonding	20	24	-	0
 2.4.5) Case Associate 2.4.5) Consistent Even 2.4.5) Consistent Even 	2w 2d 4h	24		0
Module • 2.4.8) Testing	48w	24w		
tor final prototype 2.4.7.1) Facture Design	2 16w	16w		
 2.4.7.2) Fasture Fabrication 2.4.8) Barry Bonding 	16w 2w	16w 2w		
 2.4.8: Cable Attachment 2.4.10: Sensor Cluing 	3w 3d 2h 2w 2d 4h	1w 2w		
2.4.11) Terring 31 Disk Modules	491w 36 4b	24w 228w 36		
 3.1) Design Studies 3.2) Sensors 	39w 4d 96w	29w3d 120w	c	
 3.2.1) Prototype 1 3.2.3.1) Design 3.3.3.3) Exhibition 	48w 18w	60w 24w		
1.2.1.2) Fabrication 1.2.1.3) Testing 1.2.21 Prototype 2	Gree 1824	12w		
 3.2.2.1) Design 3.2.2.2) Fabrication 	18w 24w	24w 24w		
• 1.2.2.3) Tetting • 3.3) Cables	Gra 78w	12w 112w		
 3.3.1 Pigtal Cables 1 3.3.1.1 Design 	26w 12w	28w 12w		
 1.3.1.2) Fabrication 3.3.1.3) Testing 	54	84		
1.1.2) Extension Cables 1 1.1.2.1) Design 1.1.2.2) Extension	12w	12w 8w		
• 3.3.2.3) Testing • 3.3.3) Pigtail Cables 2	6w 26w	8w 28w		· · · · · · · · · · · · · · · · · · ·
 3.3.3.1) Design 3.3.2) Fabrication 	12w 8w	12w 8w		
1.1.1.1) Testing 3.4) Module Support	Ger 114w 2d	8w 116w		
 3.4.1) Rapid Protetype 1 3.4.1.1) Design 	12w 46 6w	22w 12w		
3.4.3.3) Testing 3.4.2) Rapid Prototype 2	4w 4d	8w 22w		
 1.4.2.1) Design 1.4.2.2) Fabrication 	6w 2w	12w 2w		
3.4.2.3) Testing 3.4.3) Final Protestype	4m 4d 88m 4d	8w 72w		
 3.4.3.11 Design 3.4.3.21 Module Frame Fabrication 	26w 26w	26w 26w		
 1.4.3.3) Mounting Clip Fabrication 1.4.3.4) Testing 	24w	24w 25w		
3.5) Module Assembly	163w 2d 4h	115w		
for rapid prototyp • 1.5.1.1) Facture Decign	84	Bw		
 1.5.1.2) Factore Fabrication 3.5.2) Burry Bonding 	8w 2w	liw 2w		-
3.5.3) Cable Attachment 3.5.4) Sensor Cluing	3w 3d 2h 2w 2d 4h	2w 2w		
 2.5.5) Completed First Module 3.5.8) Testing 	43w	24w		© 12/1/09 5:00 PM
8.5.7) Fixtures 2 for Inul protrigor	16w	16w		
1.5.7.2) Fisture Fabrication	8.	8w		
 3.5.8) Bang Bonding 3.5.8) Cable Attachment 3.5.30 Cable Attachment 	2w 3w 3d 2h	2w 1w		0.0
• 1.5.11) Terring • 4) Test Beam	72w 388w	24w 178w		
 4.1) Test Beam 1 4.1.1) DAQ 	144w 22w	65w 24 16w		
 4.1.3.1) Design 4.1.3.2) Fabrication 	18w 4w	12w 4w	_	b
4.1.2) Power Supplies 4.1.2.1) Design	22w 18w	16w 12w	-	
4.1.3 Support Structure 4.1.3 Decer	16w	16w	Ē	
4.1.3.2) Fabrication 4.1.4) Software Design	4w 12w	4w 12w		*
4.1.5) Assembly 4.1.6) Operation	Bur 16w	Ber Ber		
4.1.7) Deta Analysis 4.2) Test Beam 2	45w 244w	24w 133w 44		
4.2.1) Power Distribution 4.2.1.1) Design 4.2.1.2) Fabrication	35w Br	24w Ber		
• 42.1.3) Tenting • 42.2) DAQ	24w 22w	24w 36w		
 42.2.1) Design 42.2.2) Fabrication 	18w 4w	12w 6w		
 4.2.3) Power Supplies 4.2.3.3) Decign 4.2.3.2) Extension 	184	12w 4w		
42.4) Support Structure 42.4.1) Design	16w 12w	16w 12w		
4.2.4.2) Fabrication 4.2.5) Software Design	4w 12w	dav 12w		
4.2.5) Assembly 4.2.7) Operation 4.2.8) Data Academic	8w 24w 72w	Bw Bw 2day		

Silicon Readout at the ILC

🔒 power pulsing

- starve front end for current between trains
- eliminates need for direct cooling

🔒 buffered readout

- store signals in analog buffers for digitization between trains
- A quiet operation during acquisition allows mounting directly to sensor

Elimination of hybrid and direct cooling reduces mass and simplifies assembly

KPiX (Baseline)

- Development at SLAC began for Si-W ECal
- 🔒 0.25μm TSMC
- 🔒 1024 channels
- \clubsuit power-pulsed: $P_{avg} = 20 \text{ mW}$
- 4 time-stamped analog buffers
- designed for bump-bonding
- hearest-neighbor logic added for use in tracker

a single cell of KPiX

KPiX64

KPiX - Status

- 64-channel prototypes: now testing KPiX64-4
- Time-stamping and linear response verified
- Operational quirks largely resolved
- Channel-to-channel gain variations understood: solution not yet agreed upon
- First noise measurement: ENC=1000+30*C
 - expected is 200+25*C
 - suspect issues with test setup
 - Getting serious about noise: new test board

channel number

KPiX - Plans

Tied to MOSIS schedule:

- one more KPiX64 with remedy to gain variations
- one KPiX128 to test for issues scaling with chip size
- KPiX1024-1 delivered Q4 2007 followed by exhaustive testing, assembly and operation of first module prototypes (including test beam operation)
- anticipate a second KPiX1024 in late 2008

50-50 joint effort with ECal group

Silicon Sensors (Baseline)

- 300μ m, single-sided p+/n silicon
- AC-coupled, poly-biased
- 50(25) μm readout(sense) pitch

Parameter	Specification
Wafer size	6-inch
Active area	92.031 mm X 92.031 mm
Number of readout (sense) strips	1840 (3679)
Depletion voltage	<100V
Junction breakdown	>200V
Leakage current	< 4µA at 150V
Strip width	7-8 μm
Coupling capacitance	>10pF/cm
Interstrip capacitance	<1.2pF/cm
Polysilicon bias resistor value	20±2 MΩ
Not working strips	<20

wirebonding pads both ends

Silicon Sensors - Status

- Prototype design and specs developed by SLAC and FNAL
- Review with external panel held last November
 - refinement of specification
 - ANSYS capacitance modeling
 - optimization of clock traces/pads: ~3500e⁻ pedestal shift worst-case
 - simulation of power/ground traces: similar in magnitude to clock effects

Silicon Sensors - Plans

- Submission for first barrel prototype to HPK ~March 1
- UNM preparing to lead full testing and QA program on sensors
 - Establish that delivered prototypes could be put into production
 - Verify capacitance calculations
 - test coupling of clock pads/lines and power traces to underlying readout strips
- Testing with readout chips
 - KPiX1024 at SLAC, UNM, FNAL, Purdue
 - Test short strips with LSTFE at UCSC
 - Benchmark alongside thin silicon with SVX4 at Purdue

Silicon Sensors - Plans

- Plan two sensor prototypes each for both barrel and disk modules
- Second disk prototype may be unnecessary during R&D phase, depends upon...
 - success of barrel modules
 - configuration of forward disks

Thinned Sensors

Prototyping sensors on thinned silicon at Purdue

- 🔒 CDF Layer 00 mask design
- 🔒 150, 200, 300 μm thickness
- Only yield issue is breakage of entire wafers
- Bias voltage, charge collection, etc. as expected
- Tested successfully with SVX4 readout: KPiX next

If KPiX achieves expected noise performance, 200 micron silicon will not compromise resolution

 \oplus

Cables

♣ ¼-ounce copper on 50µm Kapton

- $\stackrel{\bullet}{\sim}$ 2 power+ground pairs <0.5Ω/trace
- 8 narrow control/readout lines
- 🔒 HV pair for sensor bias
- cable width ~1cm
- pigtail includes surface mounts for filtering sensor bias and KPiX power
- Iong but simple extension cables to concentrator boards at ends of barrels: several viable mini-connector options

Cables - Status/Plans

UNM beginning cable design: UC Davis ECal cable provides initial reference

pigtail design for each module design: 2 barrel + 2 disk
one extension each for barrel and disk

Module Support

Can be minimal

- 🔒 Hold silicon flat
- Facilitate handling
- Provide stable positioning
- Allow for silicon mounting on sides

Module Support

Pair of 60-60-60, 0.009" high-modulus CF sheets ♣ 0.125" Rohacell sheet ♣ 50% void, CF under chip Handle / cable strain relief 0.0120 0.0090' Produced in sheets and cut by water jet 0.1250 0.0090'

23

Module Mounting

Axial strip misalignment degrades resolution for standalone if tracker is $r-\phi$ only: mounting repeatability is the key

Goal: 100µrad

- 30% CF-filled Torlon rails
 - 🔒 Modulus = 1/3 7075 Al
 - CTE = Si + 3×10^{−6}/°K
- Mounting balls
 - ♣ 0.125" Si₃N₄, insert molded
 - extremely hard, precise, light, inexpensive

Module Mounting

CF-filled Torlon mounting clip with custom Si₃N₄ inserts
 inserts may be expensive in small quantities

v-groove

hasp

Module Support - Plans

- Need FEA and bench testing to optimize frame & clip designs
- Two sets of rapid prototypes to refine concepts in both barrel and disk
 - first RP for barrel modules in March: CMM tests on mating repeatability
 - second RP for first modules and to develop final prototype design/tooling
- Final prototypes industrially produced: tool design/fabrication is a large NRE

Since standalone tracks are rare and have low P_T , all-Torlon may prove sufficient. Bench testing and simulation can answer this question.

R&D costs significantly lower if Torlon mating parts meet our requirements

Assembly

- Most parts/assembly by outside vendors
 - 🔒 bump bonding
 - 🔒 module frames
 - 🔒 mounting rails
 - mounting clips

- Performing only specialized work inhouse results in simple production
 - attaching mounting rails to frames
 - 🔒 cable gluing
 - 🔒 bias connection
 - 🔒 cable wirebonding
 - 🔒 sensor gluing
 - accept/reject testing
 - wirebond encapsulation

Assembly - Plans

- Bump-bonding: benefitting from UC Davis expertise
- Will develop fixtures for each set of module prototypes
 - First set to test assembly concept with first barrel/disk module prototypes
 - Second set designed to simulate production fixtures for final barrel/disk module prototypes

Goal: simple, massively parallel production that minimizes dependence on expensive equipment and time-consuming procedures (e.g. alignment via CMM)

Test Beam

Require at least two test beam activities:

Test beam with first barrel modules in early 2008:

- standalone power supplies and small-scale DAQ
- Test beam with several planes of final barrel modules and first disk prototypes in early 2010:
 - full prototype DAQ and power distribution system

We will want to participate in joint test beams with other subsystems (esp. VTX and ECal) as opportunities present.

Power/Readout Distribution

Concentrator boards distribute power, readout and control for ~20 modules each

Existing optical transceivers easily meet data rate and power/cooling envelopes

Power is more difficult

- Plan DC-DC conversion to reduce incoming cable plant: no easy solution
- power pulsing presents problems similar to those in VTX but much less severe
 - charge pump w/ power buffering?
 - serial powering?

Summary

- Innovative, somewhat aggressive approach to module design
- Potential rewards justify risks
 - ∼0.5% X₀ for single-sided modules, 300µm silicon including cable stack
 - inexpensive, mass-produced components
 - simple assembly and installation
- Important to have alternate plans: wirebonded KPiX or UCSC LSTFE
- Major work (and funding) required

Additional Slides

32

Backup Plan?

Introduction of a small flip-chip style adapter

- Chips bump-bonded to adapter
- Adapter bump-bonded or wirebonded to sensor

Readout/power on top side of adapter

Production of wirebondable KPiX chip is possible, but options for mechanical assembly are relatively distasteful

Parallel development of UCSC LSTFE is an important contigency for SiD tracker

Far Forward Region

Only one small piece of far-forward disks will be problematic for baseline KPiX-based design

If so, this piece could easily become part of VXD

33

SLAC Laboratory Facilities

Plans for silicon laboratory/cleanroom at SLAC well underway

- Pending support in a tough FY07
- 3 of 4 major pieces of equipment in hand

Assembly Precision

Repeatability is the key to strip alignment

- Sensor—Frame: frame clips to assembly fixture exactly as to mounting clip
 - strip orientation w.r.t. fixture reproduced w.r.t. mounting clips
- Clips—Barrel: clips attach to assembly fixture exactly as to module frames
 - strip orientation preserved when frames are clipped onto barrel supports

Homogeneity and surface finish of mating parts are the critical elements. Materials and fabrication techniques must be chosen with these factors in mind.

Tracking Requirements

SiD tracking must...

- provide superior asymptotic P_T resolution ("a")
- place minimal material in tracking volume ("b")
- provide tracking throughout a large volume
- be efficient and robust against backgrounds
- be robust against accidents and aging

KPiX - Plans

Task	Effort	Duration	2007	2008
• 1) KPIX	147w	95w 🥅		
 1.1) KPIX64-5 	31w 1d	27w 1d 📁		
 1.1.1) Design 	11w 1d	11w 1d j 🦳		
 1.1.2) Fabrication 	8w	8w		
• 1.1.3) Testing	12w	8w		
 1.2) KPIX128-5 	28w 4d	24w 4d		
• 1.2.1) Design	8w 4d	8w 4d		
 1.2.2) Fabrication 	8w	8w		
• 1.2.3) Testing	12w	8w		
 1.3) KPIX1024-1 	37w	31w	P	Č.
• 1.3.1) Design	11w	11w		
 1.3.2) Fabrication 	8w	8w		
• 1.3.3) Testing	18w	12w		
 1.4) KPIX1024-2 	50w	44w		
• 1.4.1) Design	24w	24w		
 1.4.2) Fabrication 	8w	8w		
• 1.4.3) Testing	18w	12w		

Resource	2007	2008	2009	2010	2011	Totals
M&S	83K	50K	-	-	-	133K
Staff	0.25	0.25	-	-	-	0.5
Postdocs	-	-	-	-	-	-
Elec. Eng.	0.25	0.25	-	-	-	0.5
Mech. Eng	-	-	-	-	-	-
Students	0.25	0.25	-	-	-	0.5
Technicians	0.25	0.25	-	-	-	0.5

Silicon Sensors - Plans

Resource	2007	2008	2009	2010	2011	Totals
M&S	100K	-	200K	100K	-	400K
Staff	-	0.25	0.25	0.25	-	0.75
Postdocs	-	-	-	-	-	-
Elec. Eng.	-	-	-	-	-	-
Mech. Eng	-	-	-	-	-	-
Students	0.25	-	0.5	0.25	-	1.0
Technicians/ Designers	-	0.5	0.5	0.5	-	1.5

 $-\bigcirc$

39

Cables - Plans

Resource	2007	2008	2009	2010	2011	Totals
M&S	30K	-	40K	10K	-	80K
Staff	0.25	-	0.25	-	-	0.5
Postdocs	-	-	-	-	-	-
Elec. Eng.	0.5	0.5	0.25	0.25	-	1.5
Mech. Eng	-	-	-	-	-	-
Students	0.25	-	0.25	0.25	-	0.75
Technicians	-	-	-	-	-	-

Module Support - Plans

Task	Effort	Duration	2007	2008	2009	2010	201
2) Barrel Modules	454w 3d 6h	144w 3d	F				
2.3) Module Support	116w 2d	112w					
• 2.3.1) Rapid Prototype 1	8w 4d	18w					
 2.3.1.1) Design 	2w	8w					
• 2.3.1.2) Fabrication	2w	2w	0				
 2.3.1.3) Testing 	4w 4d	8w					
• 2.3.2) Rapid Prototype 2	18w 4d	22w					
 2.3.2.1) Design 	12w	12w					
• 2.3.2.2) Fabrication	2w	2w	0				
 2.3.2.3) Testing 	4w 4d	8w					
• 2.3.3) Final Prototype	88w 4d	72w					
• 2.3.3.1) Design	24w	24w					
2.3.3.2) Module Frame Fabrication	24w	24w					
 2.3.3.3) Mounting Clip Fabrication 	24w	24w					
 2.3.3.4) Testing 	16w 4d	24w					
3) Disk Modules	491w 3d 4h	228w 3d	F				
 3.4) Module Support 	114w 2d	116w		P			
3.4.1) Rapid Prototype 1	12w 4d	22w				and the second se	
• 3.4.1.1) Design	6w	12w					
 3.4.1.2) Fabrication 	2w	2w		0			
• 3.4.1.3) Testing	4w 4d	8w					
3.4.2) Rapid Prototype 2	12w 4d	22w		F			
• 3.4.2.1) Design	6w	12w					
3.4.2.2) Fabrication	2w	2w			0		
• 3.4.2.3) Testing	4w 4d	8w					
3.4.3) Final Prototype	88w 4d	72w			P		
• 3.4.3.1) Design	24w	24w					
3.4.3.2) Module Frame Fabrication	24w	24w					
3.4.3.3) Mounting Clip Fabrication	24w	24w					
 3.4.3.4) Testing 	16w 4d	24w					

Resource	2007	2008	2009	2010	2011	Totals
M&S	10K	160K	30K	150K	-	340K
Staff	0.5	0.5	0.25	-	-	1.25
Postdocs	-	-	-	-	-	-
Elec. Eng.	-	-	-	-	-	-
Mech. Eng	0.25	0.5	0.5	-	-	1.25
Students	-	-	-	-	-	-
Technicians/ Designers	0.25	-	0.25	0.25	-	0.75

-

Assembly - Plans

					-	
M&S	25K	10K	20K	10K	-	65K
Staff	-	0.25	0.25	0.25	0.25	1.0
Postdocs	-	0.5	0.5	0.5	0.5	2.0
Elec. Eng.	-	-	-	-	-	-
Mech. Eng	0.25	0.25	0.25	0.25	-	1.0
Students	-	-	0.5	0.5	0.5	1.5
Technicians/ Designers	0.25	0.25	0.25	0.25	0.25	1.25

Test Beam - Plans

Resource	2007	2008	2009	2010	2011	Totals
M&S	-	5K	-	10K	-	15K
Staff	-	0.25	-	0.25	-	0.5
Postdocs	-	-	-	0.25	0.25	0.5
Elec. Eng.	-	-	-	-	-	-
Mech. Eng	-	0.25	0.25	-	-	0.5
Students	-	0.5	0.25	0.5	0.5	1.75
Technicians/ Designers	-	0.25	-	0.25	-	0.5

Power/Readout Distribution

Task	Effort	Duration	2007	2008	2009	2010	20
 4) Test Beam 	388w	178w					
• 4.1) Test Beam 1	144w	65w 2d	-				
• 4.1.1) DAQ	22w	16w					
• 4.1.1.1) Design	18w	12w					
• 4.1.1.2) Fabrication	4w	4w					
• 4.1.2) Power Supplies	22w	16w					
• 4.1.2.1) Design	18w	12w					
• 4.1.2.2) Fabrication	4w	4w	6				
• 4.2) Test Beam 2	244w	133w 4d		F			
• 4.2.1) Power Distribution	68w	56w		+			
• 4.2.1.1) Design	36w	24w					
• 4.2.1.2) Fabrication	8w	8w		ċ			
• 4.2.1.3) Testing	24w	24w			č		
• 4.2.2) DAQ	22w	16w					
• 4.2.2.1) Design	18w	12w			<u> </u>		
• 4.2.2.2) Fabrication	4w	4w			<u> </u>		
 4.2.3) Power Supplies 	22w	16w					
• 4.2.3.1) Design	18w	12w			<u>Č</u>		
• 4.2.3.2) Fabrication	4w	4w			.		

Resource	2007	2008	2009	2010	2011	Totals
M&S	-	10K	5K	10K	-	25K
Staff	-	-	-	-	-	-
Postdocs	-	-	-	-	-	-
Elec. Eng.	0.25	0.25	0.25	-	-	0.75
Mech. Eng	-	-	-	-	-	-
Students	-	-	0.5	-	-	0.5
Technicians / Designers	-	-	0.25	-	-	0.25