Reconstruction Methods at DESY Ralf Diener

- Outline:
 - Pad Response Correction: Performance?
 - Number of Rows: Resolution and Stability?
 - Double Track Resolution:
 Status of ongoing work

ill

MultiFit

Reconstr. Software MultiFit

- 3 Step process: Hit Reconstruction \rightarrow Track Finding
 - \rightarrow Track Finding \rightarrow Track Fitting
- 2 Track Fit Methods implemented: (both for straight line and circular arc track hypothesis)
 - Chi Squared Method: fits track hyphothesis to reconstructed hits
 ← Pad Response Correction (PRC) implemented in hit reconstruction
 - Global Fit Method^(*): fits track hyphothesis to measured pulses (signals on the pads) → built-in PRC

^(*): "TPC Performance in Magnetic Fields with GEM and Pad Readout" D. Karlen, P. Poffenberger, G. Rosenbaum Nucl.Instrum.Meth. A555 (2005) 80-92

• Fit results: Intercept X₀, Slope X,

Circ. Arc: Curvature, Global Fit: Width σ (can be fixed per track and row during fit depending on z; calculated from D and σ_0)

Pad Response Function

Chi Squared fit works on hit coordinates \rightarrow reliable hit reconstruction necessary!

Ralf Diener, Hamburg University

TPC Jamboree, March 2007

PRC Implementation in MultiFit

 Pad Response Function (Gaussian charge cloud)

$$Q_{pad}(y) = \int_{-\infty}^{+\infty} \left(\Theta(\psi - \frac{\Delta}{2}) * \Theta(-\psi + \frac{\Delta}{2}) \right) \times \left(\frac{Q_{max}}{\sqrt{2\pi} \sigma_s} * \exp\left[\frac{-(y - \psi)^2}{2\sigma_s^2}\right] \right) d\psi$$

• Pad Response Correction

$$F_{noflat} = P_1 x + P_2 \sqrt{x} + \left(\frac{1 - P_1}{2} - \frac{P_2}{\sqrt{2}}\right) \cdot \sqrt[3]{2x}$$
$$F_{flat} = P_0 x + P_2 \sqrt{x} + \left(\frac{1 - 2P_0}{2} - \frac{P_2}{\sqrt{2}}\right) \cdot \sqrt[3]{2x}$$

- Parameters: dependent on width $\boldsymbol{\sigma}$

$$P_{0} = a_{01} \left((1 - \sigma) / (a_{00}) \right)$$

$$P_{1} = a_{15} \sigma^{5} + a_{14} \sigma^{4} + a_{13} \sigma^{3} + a_{12} \sigma^{2} + a_{11} \sigma + a_{10}$$

$$P_{2, flat} = a_{26} \sigma$$

$$P_{2, noflat} = a_{25} \sigma^{5} + a_{24} \sigma^{4} + a_{23} \sigma^{3} + a_{22} \sigma^{2} + a_{21} \sigma + a_{20}$$

needed input for reconstruction: diffusion / defocussing coefficients

Effect of PRC: Hit Position (Monte Carlo)

Distance of Hits from the MC Track

 Mean distance of the reconstructed hits from the Monte Carlo track truth in dependence of the position of the track relative to the pad :

MC Intercept (in this row) relative to the pad [mm]

- The track angle is not taken into account (would alter the charge distribution on the pads)
- The correction happens during the hit reconstruction (where the track parameters are unknown) → How to take it into account?:
 - Iterative process: PRC Track Fit PRC (... more than once?)

Influence of the Number of Rows

- Chi Squared Method:
 - 6 rows in comparison too good
 - 8 rows already reasonable
 - 19 rows results show expected shape and are comparable with Global Fit results for 19 rows

- Global Fit with free σ :
 - 6 rows unreasonably good
 - 8 and 19 rows tend to more reasonable results
- Global Fit with fixed σ:
 - results conservative and scale with increasing number of rows
- Both flavors comparable at 19 rows

Number of Rows: Track Fit – Slope (Angle)

Number of Rows: Track Fit - Intercept

- Increased number of rows make fit methods more stable (as expected)
- Influence on the resolution probably dominated by the hit position reconstruction; difference between methods:
 - Chi Squared: hit reconstruction independent of the track fit
 - Global Method: hit reconstruction influenced by quality of track fit

- X

Double Track Resolution

Simulation of the Magnet for 1 T (P. Krstonosic)

$\Delta \, x \approx \alpha \cdot L$

different inclination of the θ -angle lead to different separation in the sensitive volume

Double-Track Reconstruction: Hit Separation

new: pulse splitting (HSM1)

- Find the first local minimum by calculating the derivative of the pulses
- Calculate a charge depending weight x = Q₁ / (Q₁+Q₂) resp. 1-x = Q₂ / (Q₁+Q₂), default value x = 1
- Produce two Pulse collections: first store pulses before minimum + minimum, second erase pulses before minimum (to repeat the method)

Performance Hit Separation: Monte Carlo

Ralf Diener, Hamburg University

HD

116

ГГ

Performance Hit Separation: Measurement

Ralf Diener, Hamburg University

Double Track Separation: Status

 Separation of pulses in z: implementation of new method based on double-Gaussian fit in progress

- Fit two single gauss functions from \rightarrow and \leftarrow to get start values for the mean₁₂ and const₁₂ (σ_{12} is fixed value)
- In a second step fit a double Gaussian function with the start parameters from the first step
- Calculate from the mean_{1,2} values of this function the z-separation

Double Track Separation: Status

- More detailed Studies of hit separation method
- Implementation of new methods?
- Global Fit Method: modifications in MultiFit:
 - Number of tracks from TrackFinder
 → use appropriate likelihood function for fit (done)
 - Implementation of re-calculation of hit x-positions in progress
- Goals:
 - Find value up to which tracks can be separated and efficiency of reconstruction
 - Study influence of 2 tracks nearby on the track fit and single point resolution

Reconstruction Methods

MultiFit: Hit Reconstruction

- Find pulses in raw data:
 - detect pulses by threshold
 - time: inflexion point of rising slope
- Separation of pulses:
 - Change in slope (ignore variations in the order of noise)
- Combine pulses to hits:
 - start with biggest pulse
 - use recursive method in a time window
 - add the pulse if it is smaller
 - take care of damaged pads
 - calculate hit coordinates
 - x: center of gravity (charge)
 - y: center of the row
 - z: error weighted mean of time of pulses

MultiFit: Track Finder

- First track hypothesis from two points -> fit straight track search in a time window for a hit in the next row
- 2) After adding the hit:
 - re-fit the track with new hit
 - repeat this procedure in the next row...
- 3) ... until reaching the last row.
 - To avoid false tracks:
 - only small gaps
 - minimal number of hits

a: SlopeX

Track Fitting: Chi Squared Method

- **Straight line** x = f(y) = ay + b
- **2nd degree polynomial:** $x = f(y) = a y^2 + b y + c$
 - rotated coordinate system

Radius $R = \frac{a}{2}$, Curvature $C = \frac{1}{R}$ Center $(x_0, y_0) \rightarrow$ solve equation system :

 $(x-x_0)^2 + (y-y_0)^2 = R^2$ for 2 points $(x_1, y_1), (x_2, y_2)$

- **Circular arc:** $(x-x_0)^2 + (y-y_0)^2 = R^2$
 - rotated coordinate system
 - initialized with results from polynomial method
 - Fit function:

$$x = f(y) = x_0 \pm \sqrt{\frac{1}{C^2} - (y - y_0)^2}$$

Global Fit Method: Basics

- Assumptions:
 - In each row the track can be described by a straight line

 XY track fit uses a Gaussian model for charge cloud

- Three (four) parameter fit:
 - Intercept X_0 (x at y=0)
 - Azimuthal angle
 - Width of the charge cloud σ

 (can be fixed in MultiFit: calculated dependent on drift length per track and per row from diffusion and defocussing coefficient)
 → more stable fit (one parameter less)
 - \rightarrow quite stable against small disturbances (dead channels)
 - Curvature C (in case of curved track hypothesis)

Page 20

x

Global Fit Method: Principle

• Likelihood function describing charge deposition per pad: $L_i = p_i^{n_i}$, with $n_i = \frac{N_i}{G}$: number of primary e⁻, N_i

G: gain factor

and $p_i = \frac{Q_{exp}}{\sum_{n=1}^{pads/row} Q_{exp}}$ (probability function)

• Product of likelihood functions of all pads:

$$\ln L = \sum_{Pad} Q_{measured} \ln \left[\frac{Q_{expected}}{\sum_{Row} Q_{expected}} \right]$$

$$\text{, with } Q_{exp} = \int_{\frac{-h}{2}}^{\frac{h}{2}} dy \int_{\frac{-w}{2}}^{\frac{w}{2}} dx \quad \frac{1}{2\pi\sigma} e^{\frac{\left[(x-X_0)\cos(\phi)+y\sin(\phi)\right]^2}{2\sigma^2}}$$

 In MultiFit implementation: hit positions will be recalculated after the track fit by fitting the likelihood function with a fixed width to the pulse data of one row

Global Fit Method: Noise Value

 In original, Canadian implementation (JTPC): no clustering → problems with noise pulses

 To make fit more robust, assign a higher probability for measuring a signal to all pads by introducing a constant offset: noise value N

• In JTPC: N=0.01; studies with MultiFit indicated that this is a good value for our implementation too, although we should filter out noise in the ClusterFinder

Point Resolution: Geometric Mean Method

- True track position not known
 → calculate two residuals
 - once for track fit including the point (denoted "distance")
 - once for track fit without the point (denoted "residual")
 - Determine the width of both distributions by Gaussian fit
 - Resolution calculated from geometric mean of both values:

$$\sigma = \sqrt{\sigma_{with}} \cdot \sigma_{without}$$

- Proven for
 - straight tracks : analytically
 - curved tracks : MC studies

Measurement Setup and Data Sets

- Length: 800 mm , Ø : 270 mm
- Sensitive volume: 666.0 x 49.6 x 52.8 mm³

- Magnetic field up to 5.25 T (deviation<7%)
- Data Sets for 0, 1, 2 and 4 T

- Studies with cosmic muons
- Gas: TDR Ar: CH_4 : CO_2 93:5:2 P5 Ar: CH_4 95:5
- Pad layouts:

 non-staggered⁽¹⁾
 staggered⁽²⁾
 columns, 8 rows
 pitch: 2.2 x 6.2 mm²

- Triple GEM amplification setup:
 - Transfer fields : 1500 V/cm Induction field : 3000 V/cm
 - About 320 335 V per GEM

mixture

properties:

Gas

cont

wate

sure,

S

B-field

oð

Ш

→ only straight

tracks!

Monte Carlo Simulation - Principle

- Muon generator: cosmic muons with realistic angular and energy spectra
- Detector and trigger geometry taken into account
- Primary ionization simulated with HEED \rightarrow 3D e⁻ distribution
- Drift:
 - Velocity and diffusion parameters from GARFIELD
 - Gaussian position smearing: $x' = x + N_{random} \cdot C_D \cdot \sqrt{L}$
- GEM amplification:
 - Electrons forced into the nearest hole
 - Amplification with effective gain (smearing: Polya distributed)
 - Drift between GEMs and last GEM to pad plane as above.
 - Collection on the pad plane and readout simulation

Monte Carlo Simulation - Performance

 X Resolution: good agreement between simulated and measured data (except first bin)

 Width of Hits: good agreement between simulated and measured data

Point Resolution Studies: Introductory Remarks

- Cuts:
 - Angle: φ < 0.1 rad (5.73°)
 Θ < ~0.44 rad (25.0°)
 - Exclude outer columns: only hits taken into account with (*nearly*) complete charge measured
 - Minimum of 6 hits per track
- Gas mixtures: TDR (Ar-CH4-CO2: 93-5-2) P5 (Ar-CH4: 95-5)

diffusion coefficient D defocussing constant σ_0

$\sigma = \sqrt{D z + \sigma_0}$

derived from GARFIELD7 simulation (0ppm water content)					
	P5		TDR		
B (T)	D (mm) 10-4	$\sigma_{_0} (mm^2)$	D (mm) 10-4	$\sigma_0^{}$ (mm ²)	
0	571	0,288	202	0,180	
1	24,05	0,227	34,1	0,142	
2	7,24	0,190	11,5	0,110	
4	1,92	0,140	3,00	0,070	

- Problem of measured data: top and bottom row (#1 and #8) show crosstalk with the surrounding shield →
 - resolution calculated with all 8 rows too pessimistic (contains not perfect hits)
 - resolution calculated with only inner 6 rows too optimistic (relation between fit parameters and data points too small)
- Both values will be presented
- 8 rows deliver more conservative results (upper limit)

Point Resolution Results: TDR gas

- Deviation between non-staggered and staggered results ← charge sharing too small
- Especially at short drift distances: results from staggered layout affected by charge sharing limit
- Results for 6 rows unreasonably good esp. Global Fit with free σ
- Resolution: ~ 120-180 µm (Z = 0-660 mm)

Point Resolution Results: P5 gas

- Again deviation between non-staggered and staggered results, but here smaller ← charge sharing too small
- Some results from staggered layout also increase at short drift distances, but much less (no big drift dependence of width)
- Results for 6 rows a bit better than for 8, but spread of results smaller for 8 rows
 - Resolution: ~ 120-170 μ m (Z = 0-660 mm)

DES

Influence of the Dead Channels

Edge Effects

• Interesting due to nearly straight tracks and edges of readout structures

- Edge: 2 outer pad columns on each side
- Not whole charge information measured → tracks get reconstructed at angle ~0° and therefore at same Intercept
 - → Edges excluded in analysis

