Discoveries through ILC Precision Measurements

İİİ

Sabine Riemann (DESY)

The LHC Early Phase for the ILC

Fermilab, April 12 - 14, 2007

1

Outline

Various studies on ILC physics including search reaches and sensitivities to physics BSM exist and have been updated with new scenarios

(see TDR's, Snowmass Reports, LHC/ILC report 2004, POWER report,...)

No concurrent operation of LHC and ILC

İL

➔ How could the ILC complete the LHC discovery results?

precision at the ILC
 sensitivities and search reaches in the light of LHC

Baseline ILC Machine

- Physics between 200 GeV and 500 GeV, upgrade 1TeV
- Luminosity:

IIL

Running year zero for commissioning

Year 1-4: $L_{int} = 500 \text{ fb}^{-1}$:

- 1. year $10\% \rightarrow L_{int} \approx 50 \text{ fb}^{-1}$
- 2. year $30\% \rightarrow L_{int} \approx 150 \text{ fb}^{-1}$
- 3. year $60\% \rightarrow L_{int} \approx 300 \text{ fb}^{-1}$
- 4. year 100% → L_{int} ≈ 500 fb⁻¹

expected statistics:

few 10 ⁴	ee→HZ at 350 GeV (mH≈120 GeV)
~10 ⁵	ee→ tt at 350 GeV
~5·10 ⁵ (1·10 ⁵)	ee → qq (μμ) at 500 GeV
~10 ⁶	$ee \rightarrow WW$ at 500 GeV

→ statistical uncertainties at per-mille level !!

- →Need high precision measurements of lumi, energy and polarisation
- → e+ polarization will help

ILC operation after LHC running

- Discovery of Higgs boson ?? (see Higgs WG)
 → implication for new physics models
- SM, top physics
- SUSY signals obtained ?
- New resonances discovered Determination of mass, couplings, widths, spin Consistency checks
- ➔ establish new models and theories

Advantage ILC:

- Precision: well defined energy, high lumi, well-known initial state, excellent particle ID, clear event signatures
- Angular distribution

New resonances lead to new s- and/or t-channel contributions → ILC is the ideal facility to measure this

Fermion-Pair Production

Observables: σ , A_{FB} , A_{LR} , A_{FB}^{pol}

$$\frac{d\sigma}{d\cos\vartheta} = \sigma_{tot} \left[\left(1 - \boldsymbol{P}^{+} \boldsymbol{P}^{-} \right) \left\{ \frac{3}{8} \left(1 + \cos^{2} \vartheta \right) + 2A_{FB} \cos \vartheta \right\} \right] + \sigma_{tot} \left[\left(\boldsymbol{P}^{+} - \boldsymbol{P}^{-} \right) \left\{ \frac{3}{8} \left(1 + \cos^{2} \vartheta \right) A_{LR} + 2A_{LR}^{pol} \cos \vartheta \right\} \right]$$

Contact terms: effective parameterization of physics BSM at 'low' energies → interference and loop contributions

Fermion-Pair Production

$$\frac{d\sigma}{d\cos\Omega} = \sum_{i,j=L,R} \rho_{ij} |Q_{ij}|^{2}$$

$$\rho_{LL,RR} = (1 + \cos^{2}\theta)$$

$$\rho_{LR,RL} = (1 - \cos^{2}\theta)$$

$$|Q|^{2} \sim | \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad \gamma, Z' \qquad + \qquad \gamma, Z' \qquad \gamma, Z' \qquad \gamma, Z' \qquad + \qquad \gamma, Z'$$

ilc

12

Interpretation of contact terms

İİL

The **puzzle** of model distinction

$$\frac{\eta_{ij}}{\Lambda^2} \Rightarrow \frac{\boldsymbol{g}_i^X \boldsymbol{g}_j^X}{\boldsymbol{s} - \boldsymbol{m}_X^2}$$

Leptoquark, squark, sneutrino exchange

$$\frac{\eta_{LL}^{ef}}{\Lambda_{LL}^2} \cdot \frac{\eta_{RR}^{ef}}{\Lambda_{RR}^2} \neq \frac{\eta_{LR}^{ef}}{\Lambda_{LR}^2} \cdot \frac{\eta_{RL}^{ef}}{\Lambda_{RL}^2}$$

New gauge bosons (Z')

$$\frac{\eta_{LL}^{ef}}{\Lambda_{LL}^2} \cdot \frac{\eta_{RR}^{ef}}{\Lambda_{RR}^2} = \frac{\eta_{LR}^{ef}}{\Lambda_{LR}^2} \cdot \frac{\eta_{RL}^{ef}}{\Lambda_{RL}^2} = \frac{g_L^{ef}}{M_{Z'}} \cdot \frac{g_L^{f}}{M_{Z'}} \cdot \frac{g_R^{e}}{M_{Z'}} \cdot \frac{g_R^{f}}{M_{Z'}} \cdot \frac{g$$

KK excitation of gauge bosons

$$\mathbf{V} \equiv 2\sum_{\vec{n}} \left(\frac{\mathbf{g}_{\vec{n}}^2}{\mathbf{g}^2}\right) \frac{\mathbf{m}_W^2}{\vec{n}^2 \mathbf{M}_W^2}$$

Parameterization

$$\frac{\eta_{ij}}{\Lambda^2} \Rightarrow \left(Q_e Q_f + g_i^e g_j^f \right) \frac{\pi}{3M_c^2}$$

Fermilab, Apr 11th. 2007

Virtual graviton exchange in $e^+e^- \rightarrow ff$

angular dependent modification of helicity amplitudes (long. Polarization: P(e)=80%, P(e+)=60%) $Q_{ii}^{ef} = Q_{ii}^{ef} \sum_{i}^{SM} -\frac{\lambda \cdot s^2}{4\pi \alpha M_s^4} (2\cos\theta - 1)$ 1.4 $e^+e^- \rightarrow b\bar{b}$ $e^+e^-\rightarrow\mu^+\mu^-$ 0.4 $\boldsymbol{Q}_{ij}^{ef} = \boldsymbol{Q}_{ij}^{ef\,SM} - \frac{\boldsymbol{\lambda} \cdot \boldsymbol{s}^2}{4\pi \alpha \boldsymbol{M}_{\boldsymbol{s}}^4} (2\cos\theta + 1)$ √s = 0.5 TeV √s = 0.5 TeV M_s=2 TeV M_s=2 TeV 1.1 0.2^{-1} A_{LR} - A_{LR} (SM) d σ/d σ(SM) -- λ=-1 ---- λ=+1 -0.2 0.9 -SM $\lambda = -1$ ILC: sensitivity for ·-· λ=+1 SM, L=1 ab⁻¹ $M_{\rm S} < 10\sqrt{s}$ • SM, L=1ab⁻¹ -0.4 0.8 -0.5 0.5 -0.5 0.5 0 0 -1 -1 $\cos \theta$ $\cos \theta$

Fermilab, Apr 11th. 2007 S. Riemann, Discovery through ILC precision measurements

Famous Example: Z'

Is the ILC sensitive enough ?? Tevatron 15fb⁻¹ LHC: LHC Z' discovery reaches 100fb⁻¹ (100/fb: model distinction 14TeV for $M_{7'}$ < 2.5TeV) LHC lab¹ 14TeV ILC: LC 0.5TeV Z' sensitivity (2σ and 5σ) lab¹ P=0.8 P_=0.6 Assumptions: LC • $\mathcal{L}_{int} = 1ab^{-1}, \ \Delta \mathcal{L}_{int} = 0.2\%$ 0.8TeV

- $P_{-} = 0.8, P_{+} = 0.6, \Delta P_{-} = \Delta P_{+} = 0.5\%$
- $\Delta sys(lept)=0.2\%$, $\Delta sys(had)=0.1\%$

IIL

lab⁻¹

P_=0.8 P_=0.6

2

4

0

12

LR SSN

 2σ

8

10

m7, [TeV]

6

1111111

Leptonic Z' Couplings at ILC

$$M_{Z'} = 1,2,3,4 \text{ TeV}$$

 $E_{cm} = 500 \text{ GeV}$
 $L = 1/ab$

Good model distinction: $M_{Z'} < 4\sqrt{s}$

In some cases sensitivity up to $M_{Z'} \sim 8\sqrt{s}$

Z' model distinction at ILC

Mr= - w 0.2^{-1} χ η 0.1 z-0 10 ŝ ψ 20 0 10 7 Z' inputSM -0.1 0 a₁^N -0.05 0.1 -0.1 0.05

$$a_{\mathrm{N}}^{\mathrm{f}} = a_{\mathrm{f}}^{\prime} \sqrt{\frac{s}{s - m_{Z^{\prime}}^{2}}} \qquad v_{\mathrm{N}}^{\mathrm{f}} = v_{\mathrm{f}}^{\prime} \sqrt{\frac{s}{s - m_{Z^{\prime}}^{2}}}$$

If no Z' information from LHC: Z' model distinction for $m_{z'} < 4 \div 8\sqrt{s}$

Fermilab, Apr 11th. 2007

İİL

e+e-→|+|-

UED KK signals (indirect search)

Fermilab, Apr 11th. 2007

Search for W'

 d_{σ}/dE_{γ} depends on W' model \rightarrow sensitivity to W':

ILC, 500GeV, 500/fb: M_{W'} <1.7TeV (SSM,KK) <0.6TeV (LRM) Without systematic error factor ~2.5 more sensitive

If W' discovered at LHC → W' Couplings

Scaling of sensitivity to contact terms

Scaling with energy and luminosity

$$\left(\frac{\sigma - \sigma_{SM}}{\delta\sigma}\right)^2 \approx L \cdot s \cdot (\sigma - \sigma_{SM})^2 \propto L \cdot s \cdot T_{contact}^2$$

$$\succ T_{contact} = \frac{\eta_{ij}}{\Lambda^2}; \frac{g_i g_j}{M_X^2} \implies \Lambda, M_X \sim (s \cdot L)^{\frac{1}{4}}$$

- reduction of statistical uncertainty by factor 2 needs 4.L and improves sensitivity by factor 1.4
- Double energy increases sensitivity factor ~1.4

(ADD model)

- Low cms energy cannot be 'compensated' with luminosity

Fermilab, Apr 11th. 2007

Scaling of sensitivity to contact terms

Scaling with polarization

$$\chi^{2} \geq \left(\frac{\sigma - \sigma_{SM}}{\delta\sigma}\right)^{2} \approx L \cdot s \cdot (\sigma - \sigma_{SM})^{2} \propto L \cdot s \cdot T_{contact}^{2}$$

• Polarization of both beams increases lumi

$$\Lambda \sim \left(1 + \boldsymbol{P}^{+} \boldsymbol{P}^{-}\right)^{1/4}$$

 If polarization-dependent observables (A_{LR}) dominate the sensitivity →

$$\boldsymbol{\Lambda} \sim \sqrt{\boldsymbol{P}_{eff}} = \left(\frac{\boldsymbol{P}^{+} - \boldsymbol{P}^{-}}{1 - \boldsymbol{P}^{+} \boldsymbol{P}^{-}}\right)^{\frac{1}{2}}$$

Extrapolation LEP2 (200GeV)
$$\rightarrow$$
 ILC (0.5 TeV, 500/fb): Λ (ILC) \approx 7.5 $\cdot \Lambda$ (LEP2)but: systematic uncertainties

Physics case has been studied for many models \rightarrow ILC complements LHC physics results

- Precision measurement
 - independent observables \rightarrow high resolution power
 - top quark production ⇔ new physics
- Measurements at energies 200-500 GeV, later 1TeV
 - This energy scan supports extrapolations ('lever arm') to effects at higher energies and constrains physics models.

Summary

To be done:

- Take realistic LHC results at a realistic LHC/ILC time scale and figure out the remaining unknowns
- Include realistic ILC detector developments into studies

ilr

.

Fermilab, Apr 11th. 2007 S. Riemann, Discovery through ILC precision measurements

Polarized initial states: $e^+e^- \rightarrow \mu^+\mu^-$

R-parity violating SUSY (spin-0) or Z' (spin-1)?

➔ polarisation improves sensitivity substantially

Fermilab, Apr 11th. 2007

İİĹ

Z' model distinction at ILC

Fermilab, Apr 11th. 2007