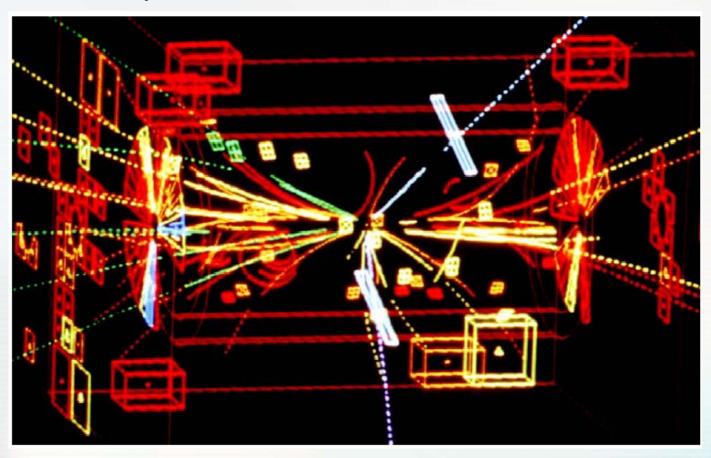
Search for Extra Dimensions and Leptoquarks in Early LHC Data

Greg Landsberg

ILC/LHC Workshop April 13, 2007

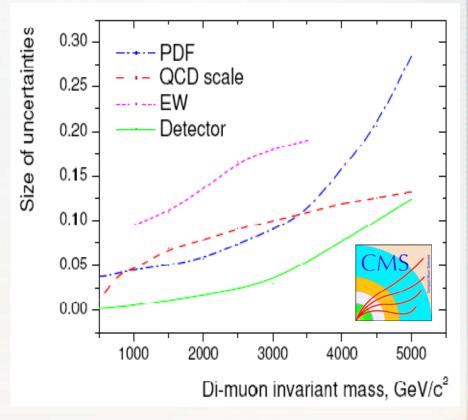
Outline



- History and General Comments
- LHC Schedule
- Challenges
- Sensitivities
- Detector-Specific Challenges
- Word of Caution
- Conclusions

History

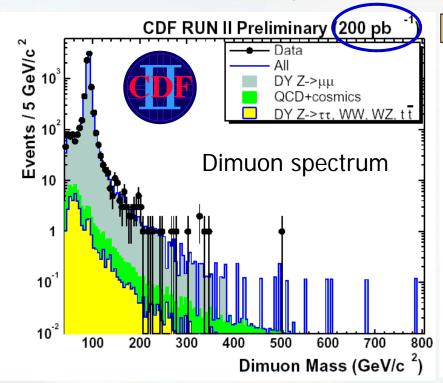
- Drell-Yan dilepton production historically has been a fruitful channel for discoveries (J/Ψ, Y, Z)
 - So maybe the LHC case

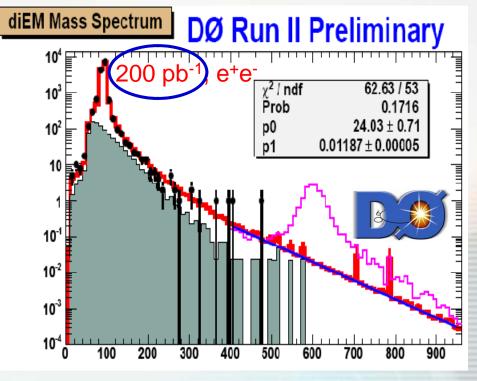


UA1 Z(ee) candidate

History, cont'd

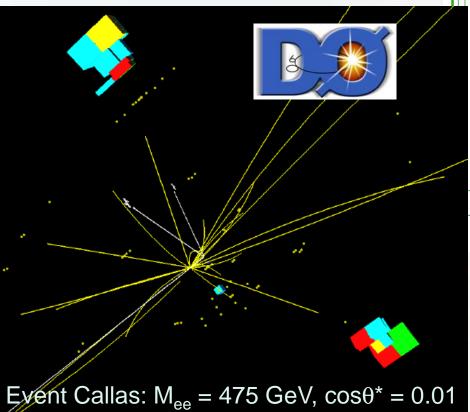
- Well-understood SM cross section (calculated to NNLO level)
- Reasonably small dependence on PDF's and other systematics (except at very low x's)

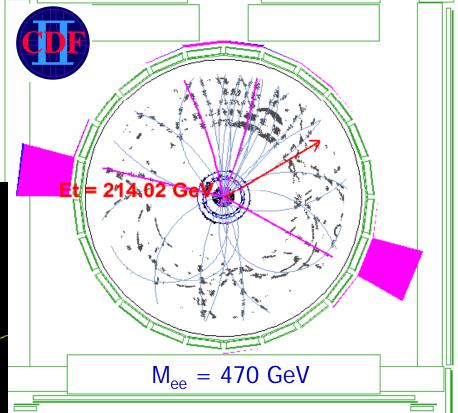



y	0	2	4	0	2	4	0	2	4
	M =	: 91.2 GeV	√c²	M =	= 200 GeV	⁷ /c ²	M = 10	000 GeV/c	2
x_1	0.0065	0.0481	0.3557	0.0143	0.1056	0.7800	0.0714	0.5278	-
x_2	0.0065	0.0009	0.0001	0.0143	0.0019	0.0003	0.0714	0.0097	-

History, cont'd

- Tevatron experience shows that these analyses can be performed fast, even with poorly understood detector:
 - Have a "standard candle" the Z, which can be used for in situ measurement of the efficiencies and luminosity
 - Have been among the first analyses shown by the Tevatron collaborations in Run II and still yield world's best sensitivity to date to a number of new phenomena





History, cont'd

BROWN UNEVERSITY

 Beautifully clean events!

General Comments

Lepton Resonances:

- Very clean channel with easy triggering and possibility of a cross check (ee/μμ/ττ)
- In situ calibration with the Z, possibly J/Ψ and Y
- (Largely) insensitive to precise tracking alignment, jet energy scale, precise calibration

Leptoquarks and other gauge bosons:

- Once dilepton channels are understood, one can start adding other objects, e.g. jets
- More complicated final states, but still relatively clean
- Resonant states among the final state particles

Challenges:

- Commissioning detectors at the same time as trying to get the first results out
- Changing beam conditions
- Changing trigger definition and event reconstruction

LHC Schedule, 2007

Calibration run in 2007

Installation
Hardware Commissioning

Hardware Commissioning 450GeV Engineering Run 450GeV

0

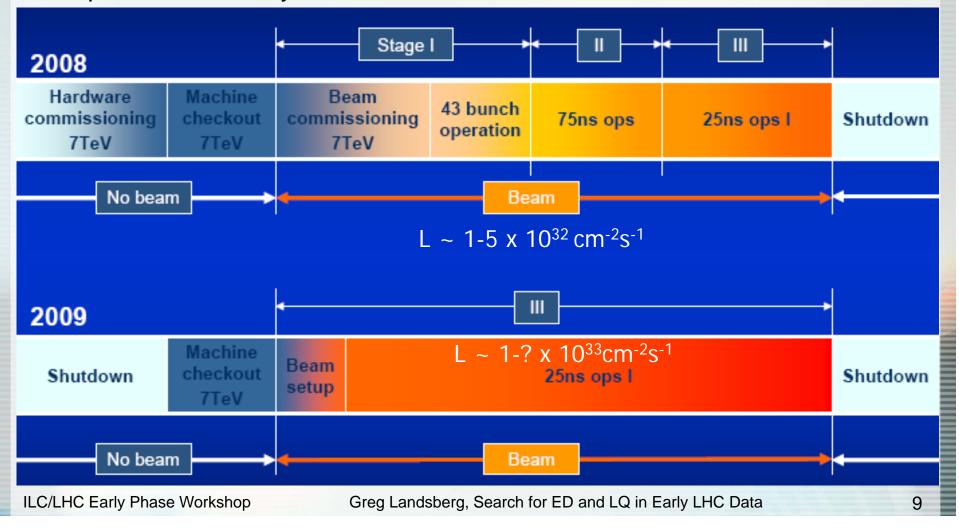
Shutdown

chine checkout 450GeV		Beam commissioning 450SeV				Calibration run 450GeV		
	k _b	/	43	43		156	156	
	I _b (10 ¹⁰)		2	4	1	4	10	
	β [*] (m)		18	4		4	4	
	luminosity		10 ²⁸	2 10 ²⁹		7 10 ²⁹	4 10 ³⁰	
	Event rate (kHz)	1	0.4	8		28	180	
	W rate ² (per 24	n)	1	17	/	62	386	
	Z rate ³ (per 24h)		0.1	1.7		6.2	39	

- Assuming 450GeV inelastic cross section
 Assuming 450GeV cross section W→ lv
- 3. Assuming 450GeV cross section $Z \rightarrow ll$

1nb

40mb


100pb

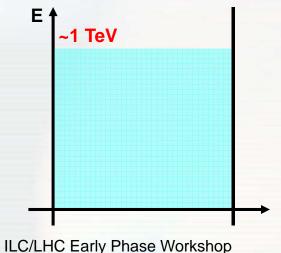
Mad

LHC Schedule

- First 14 TeV Collisions: June 2008
- Effective ATLAS/CMS running time/year: ~1000 hours ~ 4×10^6 s ~ 4×10^{39} cm⁻² = 4×10^{15} b⁻¹ = 4 fb⁻¹ @ 10^{33} cm⁻²s⁻¹
- Expected luminosity: ~1 fb⁻¹ on 2008; ~5 fb⁻¹ in 2009

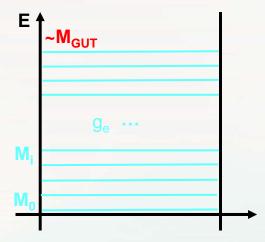
'Early Phase' Assumptions

- Still large uncertainties on the delivered luminosity in 2008-2009
- Define `early physics' as 1-10 fb⁻¹ of good quality data
- This is the dataset we <u>could</u> expect by the time of the Tevatron shutdown
- This may vary from channel to channel, but gives an overall guidance on what to expect from early LHC run
- Focus on dielectron and dimuon reach; will comment on ditaus as well
- Assuming typical acceptance of 50% and 80% detection efficiency expect ~2,000 events produced for a process with 1pb cross section
- Assuming at least ~5 events necessary for discovery, can probe cross sections up to ~2 fb
- Disclaimer: will use slightly more CMS than ATLAS studies, as CMS has brand new Physics TDR
 - Gustaaf will hopefully compensate this slight misbalance


ED Models: The Stage

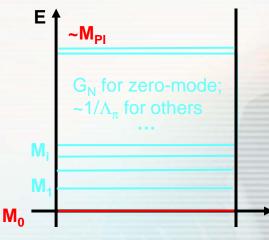
ADD Model:

- Winding modes with energy spacing ~1/r, i.e. 1 meV - 100 MeV
- Can't resolve these modes – they appear as continuous spectrum


Gravitational coupling per mode; many modes

TeV⁻¹ Scenario:

- Winding modes with nearly equal energy spacing ~1/r, i.e. ~TeV
- Can excite individual modes at colliders or look for indirect effects


$$M_{i} = \sqrt{M_{0}^{2} + i^{2}/r^{2}}$$

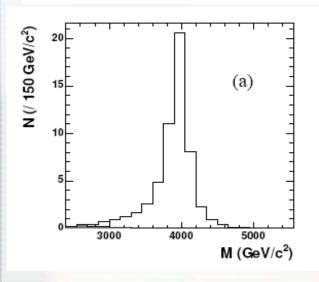
RS Model:

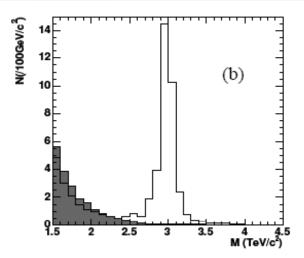
- "Particle in a box" with a special metric
- Energy eigenvalues are given by zeroes of Bessel function J₁
- •Light modes might be accessible at colliders

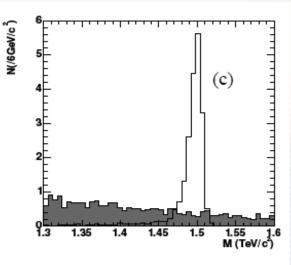
$$M_0 = 0; M_i = M_1 x_i / x_1 \approx M_1, 1.83 M_1,$$

 $2.66 M_1, 3.48 M_1, 4.30 M_1, ...$

Dielectrons: Discovery Channel

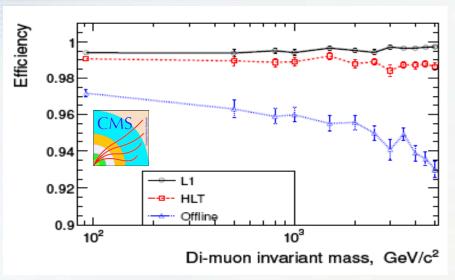


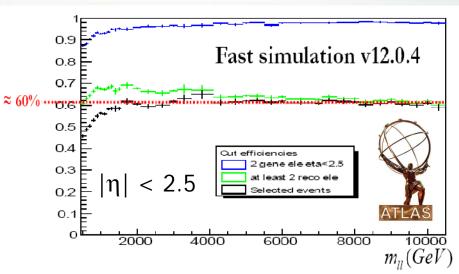

- Excellent resolution 5-10%/sqrt(E, GeV) (calorimeter based) and detection efficiency
- Low background above ~1 TeV


	KK Z		$G_{r} c = 0.01$	G, c = 0.1	SSM Z'	
M	4.0	6.0	1.5	3.5	1.0	5.0
$M_{\rm w}$	3.5-4.5	5.0-6.7	1.47-1.52	3.30-3.65	0.92-1.07	4.18-5.81
$N_{\rm s}$	50.6	1.05	18.8	7.30	72020	0.58
$N_{\rm b}$	0.13	0.005	4.16	0.121	85.5	0.025
S	22.5	3.0	6.39	6.83	225	1.63

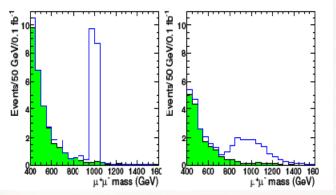
CMS, 30 fb-1

Z_{KK} production

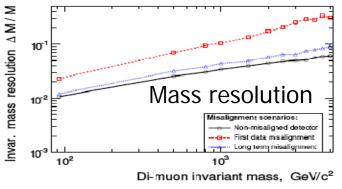




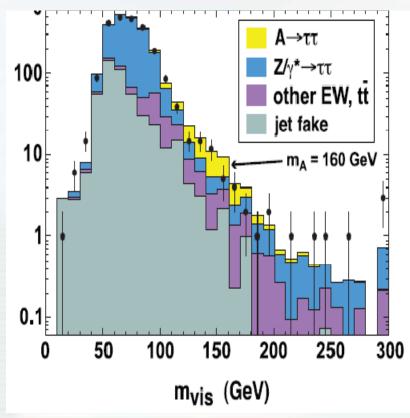
Dimuons: Confirmation Channel?

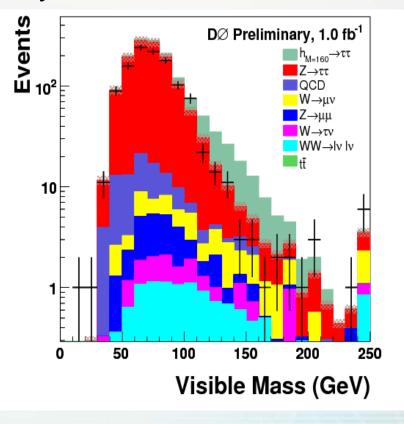


Generally worse rapidity coverage, detection efficiency

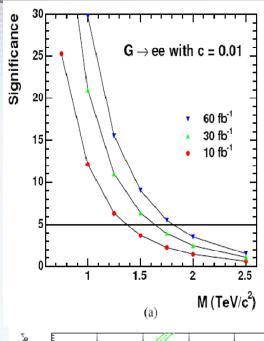


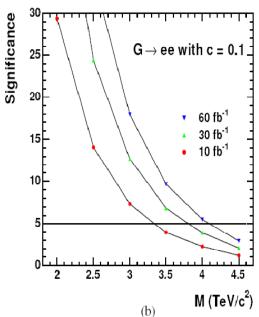
Significantly worse momentum resolution than for electrons

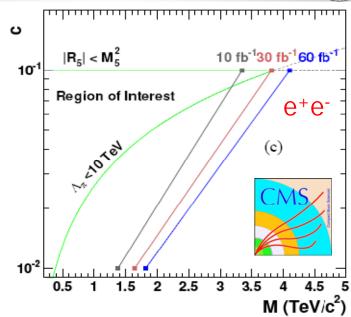


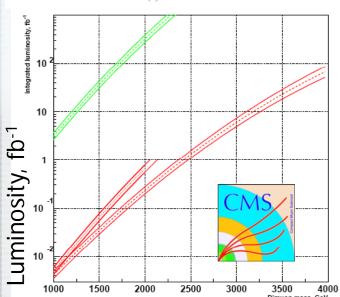

 Nevertheless: generally lower instrumental background may make dimuons a discovery channel along with dielectrons

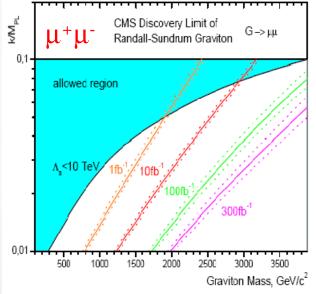
What About Tau's?


- Less studied for the discovery reach by the LHC collaborations, but still can be accessible for early physics
- N.B. The first Tevatron Run II cross section paper was DØ Z(ττ) measurement
- Very interesting reach for MSSM Higgs and other resonances; could also be tricky?

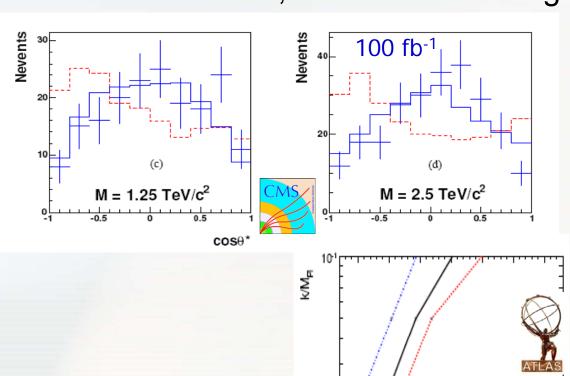


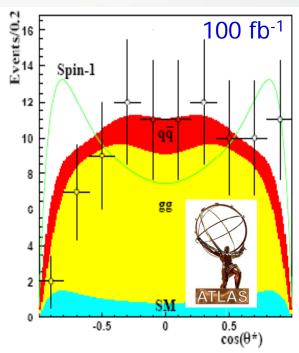



Randall-Sundrum Graviton Reach



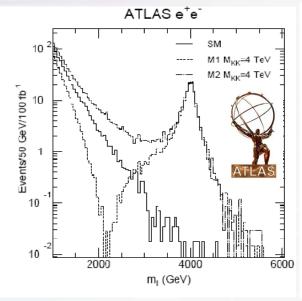
Coupling constant c	Estimator	$1 {\rm fb^{-1}}$	$10 {\rm fb}^{-1}$
1 0	S_{cP}	0.75	1.20
0.01	S_{cL}	0.77	1.21
	S_L	0.78	1.23
	S_{cP}	1.21	1.72
0.02	S_{cL}	1.22	1.72
	S_L	1.22	1.74
	S_{cP}	1.83	2.48
0.05	S_{cL}	1.85	2.49
	S_L	1.85	2.51
	S_{cP}	2.34	3.11
0.1	S_{cL}	2.36	3.13
	S_L	2.36	3.16

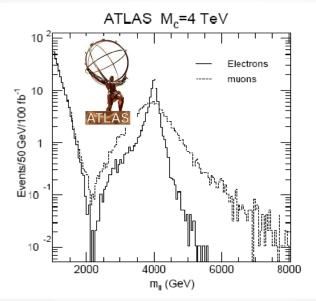


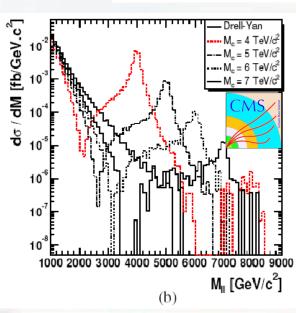

ILC/LHC Early Phase Workshop

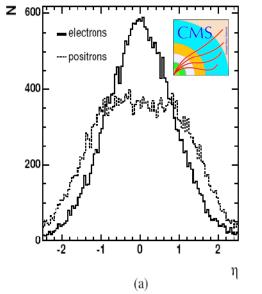
Angular Distributions?

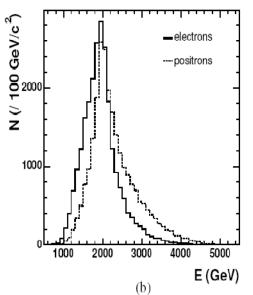
- Not in the early running!
 - "One event discovery; two events cross section measurement; three events – angular distributions"

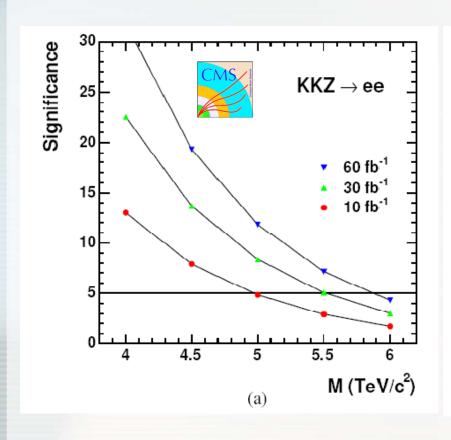


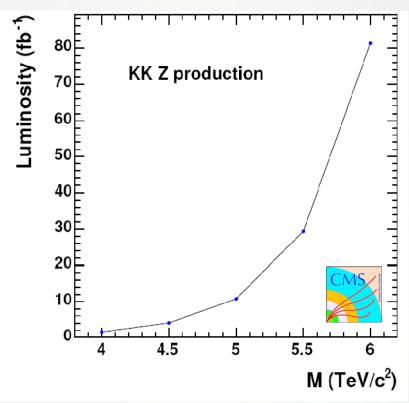



Graviton Mass (GeV)


KK Excitations of the Z Boson

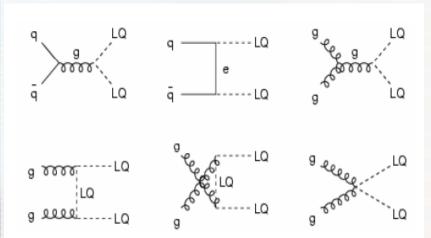


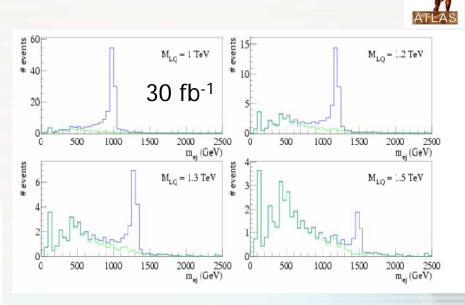

ILC/LHC Early Phase Workshop


Greg Landsberg, Search for ED and LQ in Early LHC Data

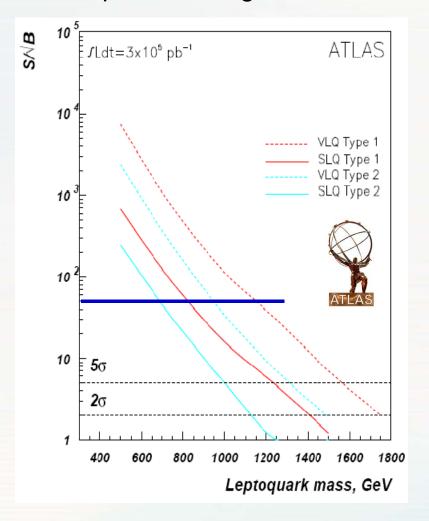
KK Reach

Dramatic reach even with ~1 fb⁻¹

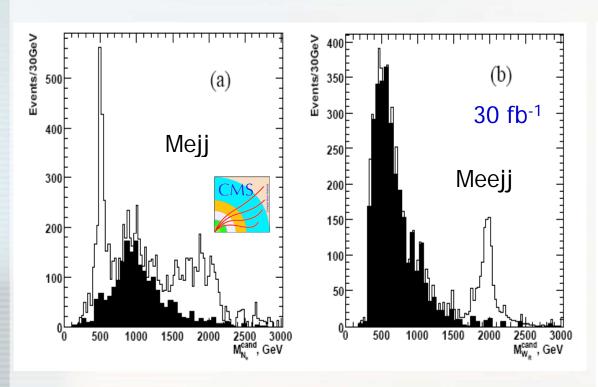


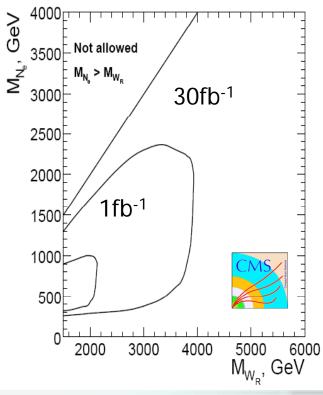

Leptoquarks

- Once II channel is understood, adding extra objects is easy, even if they are as messy as jets!
- Focus on the IIjj channel
 - evjj is a possibility, but no existing studies
 - ννjj will take long time


$M_{\rm LQ}({ m TeV})$	σ (fb)	Signal	Background	$S/\sqrt{\mathrm{B}}$
1.0	4.96	98.5	2.84	58
1.2	1.33	22.0	2.43	14
1.3	0.713	12.8	1.44	11
1.5	0.223	3.62	0.376	5.9

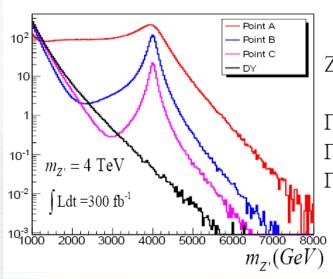
Leptoquarks: Reach


- Reach plot available for 300 fb⁻¹
 - Scale significance as sqrt(L)
 - S/sqrt(B) of 50 correspond to 5 sigma at 3 fb⁻¹



Right-handed W

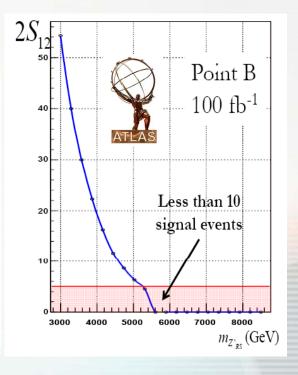
- W_R production, with $W_R \rightarrow I + N \rightarrow I + Ijj$
- Interesting reach even with ~1 fb⁻¹



Challenges: General

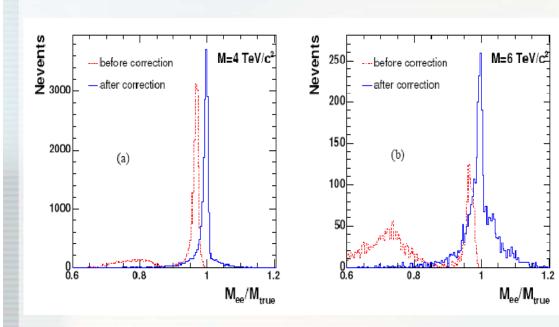
- Broad resonance are possible at high masses; signal start looking compositeness (or instrumental effect!) like
- Reduces the reach; requires different optimization of the search

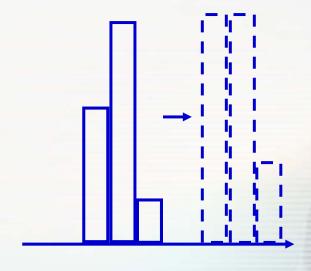
Example: bulk Z_{KK} in RS model


Z' Width @ M_Z =4 TeV

 Γ = 800 GeV for point A (0.2 $M_{Z^{\prime}}\!)$

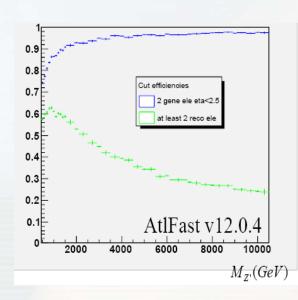
 $\Gamma = 200 \text{ GeV for point B } (0.05 \text{ M}_{Z})$

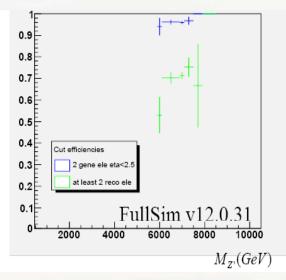

 Γ = 170 GeV for point C (0.04 M_{Z})

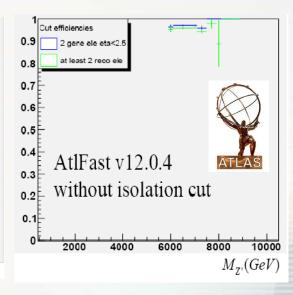


Challenges: CMS

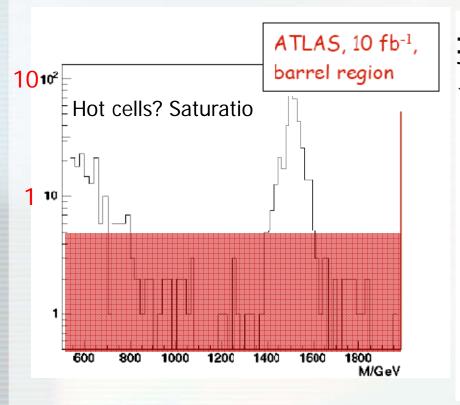
- ECAL saturation: a single crystal saturates at ~1.7 TeV; start seeing effect for >4 TeV Z'
- Correct energy at a slight resolution loss using "chargesharing" technique
- Triggering with saturation could present another challenge!

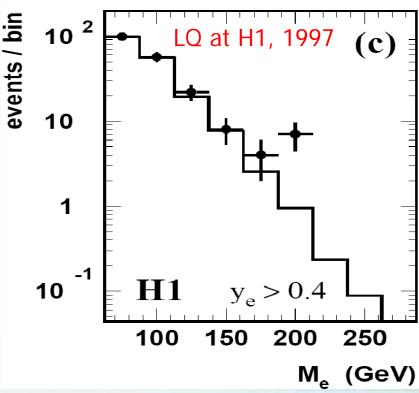





Challenges: ATLAS

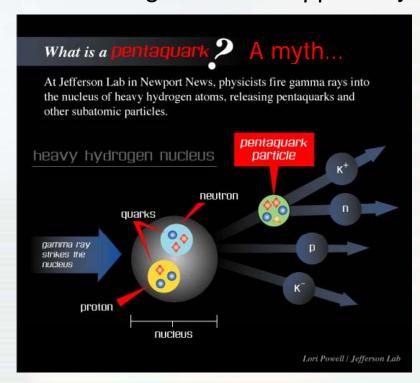
- Electron efficiency drops fast with mass when "standard" isolation cut is used
 - Loosely confirmed by full simulation
- New set of isolation cuts is being developed to recover efficiency at high masses





Last-Bin Effect

- Note the last-bin effects: saturation can easily cause a peak
 - Unlikely that confirmation could come from the dimuon (resolution) or ditau (ID, trigger, $Z(\tau\tau)$ first!) channel at the time of discovery
 - Thus many cross checks will be required



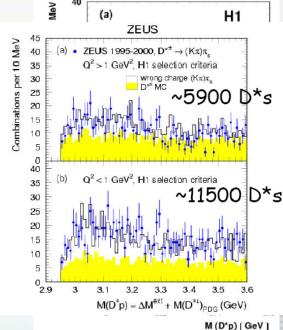
Memento Pentaquarks...

- Involved about a dozen (!) of groups all over the globe!
- Generated about 400 references in the literature
- Net result: every single claim of 2003 has been disputed by at least one other group
- IMHO: quite a shame for the field, which is over 100 years old and so proud of the widely-accepted 5σ discovery standard
- Unfortunately follows a long trail of "miscoveries" from split A₂ to the Heidelberg-Moscow 0vββ decay claim and DAMA story

Experiment	Reaction	State	Mode
LEPS(1)	$\gamma C_{12} \rightarrow K^+K^-X$	θ^+	K^+n
LEPS(2)	$\gamma d \rightarrow K^+K^-X$	θ^{+}	K^+n
CLAS(d)	$\gamma d \rightarrow K^+K^-(n)p$	θ^+	K^+n
CLAS(p)	$\gamma p \rightarrow K^+K^-\pi^+(n)$	θ^{+}	K^+n
SAPHIR	$\gamma p \rightarrow K_S^0 K^+(n)$	θ^{+}	K^+n
COSY	$pp \rightarrow \Sigma^+ K_S^0 p$	θ^{+}	$K_S^0 p$
JINR	$p(C_3H_8) \rightarrow K_S^0pX$	θ^{+}	$K_S^0 p$
SVD	$pA \rightarrow K_S^0 pX$	θ^{+}	$K_S^0 p$
DIANA	$K^+Xe \rightarrow K_S^0p(Xe)'$	θ^{+}	K_S^0p
νBC	$\nu A \rightarrow K_S^0 p X$	θ^{+}	$K_S^0 p$
NOMAD	$\nu A \rightarrow K_S^0 p X$	θ^+	K_S^0p
HERMES	quasi-real photoproduction	θ^{+}	$K_S^0 p$
ZEUS	$ep \rightarrow K_S^0 p X$	θ^+	$K_S^0 p$
NA49	$pp\to\Xi\pi X$	Ξ_5	$\Xi\pi$
H1	$ep \rightarrow (D^*p)X$	θ_c	D^*p

[Dzierba et al, hep-ex/0412077]

Peaks Are Not Easy to Fake?


Lee Ann Womack - "Now You See Me, Now You Don't"

Better take a good look before I disappear
Because I'm just about to be your used-to-be
You might catch a glimpse of my taillights in the dust
And if you notice something missin', well it's me

'Cause I tried and you lied

. . .

Now you see me, now you don't
First you do but then you won't
Watch me vanish right before your eyes
You might think you see me there
In a cafe on a street somewhere
Yeah, that might be me but I'll be gone
Now you see me, now you don't

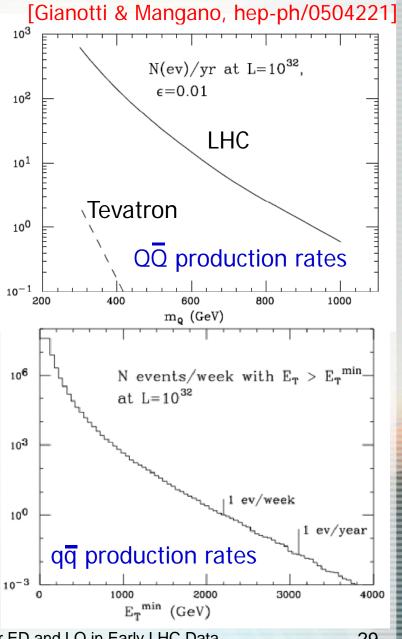
. . .

Conclusions

- Early LHC Physics certainly hold many surprises: both pleasant and unpleasant ones
- The machine and detector will come online and will be commissioned in parallel, which adds to the challenges
- Nevertheless, dilepton channel was historically very discovery-rich, and if history is any guide, we should be able to discover multi-TeV resonances in these channels relatively fast
- This is a brand new territory, where Tevatron doesn't have any reach, so surprises may come very early
- Both ATLAS and CMS collaborations are well aware of challenges and have formed dilepton working groups looking at realistic scenarios and developing discovery strategy
 - While a discovery can't be planned, it can and should be prepared for and accelerated!

The LHC Surprise ?

LHC vs. Tevatron:


- -Nearly an order of magnitude higher c.o.m. energy (SSC would have been even better!)
- -Significantly reduced relative rate of important SM backgrounds due to the pp initial state
- -Consequently, surprises are possible literally on Day One of operations
- -Nevertheless, how likely are they?

•LHC event yield per 10 fb⁻¹:

channel	recorded events per experiment for 10 fb^{-1}
$W \rightarrow \mu\nu$	7×10^7
$Z ightharpoonup \mu \mu$	$1.1 imes 10^7$
$t\overline{t} \to \mu + X$	0.08×10^{7}
QCD jets $p_T > 150 \text{ GeV}$	$\sim 10^7$ (assuming 10% of trigger bandwidth)
minimum bias	$\sim 10^7$ (assuming 10% of trigger bandwidth)
$\tilde{g}\tilde{g},$ m $(\tilde{g}){\sim}1~{\rm TeV}$	$10^3 - 10^4$

[Gianotti & Mangano, hep-ph/0504221]

 What are the Tevatron lessons in some of these channels?

