New and Old Gauge Boson Discoveries in Early LHC Data

Gustaaf Brooijmans

COLUMBIA UNIVERSITY

Gustaaf Brooijmans

New and Old Gauge Boson Discoveries in Early LHC Data

Goals?

- I started with being somewhat confused about the goals of this workshop
 - Prevent premature construction of a 500 GeV ILC?
 - (Little risk of that happening IMHO YMMV)
 - Is a 500 GeV ILC still worth it if we see a 1.3 TeV Z' early on?
 - Interesting question for the theory community: which lower mass particles that can be produced at an ILC can you "hide" from early discovery at LHC? What should we look for?
- The following are an incomplete overview of things we can do with hard leptons, photons and top quarks

• 1 TeV Z_{η} study

- Narrower than SSM (0.7 vs 3.1 GeV), but dominated by detector anyway
- Cross-section 2-3 times smaller than SSM
- Note: statistics scaled down, so fluctuations "not to scale"

- 5σ discovery reach
- Systematics don't change these results much
- 2-3 TeV with 1 fb⁻¹
- 3-4 TeV with 10 fb⁻¹
- Early bad news for ILC?
 - Depends on what else is there....
- Dielectron reach similar

- Z'->ee
- 400 pb⁻¹ reach using CDDT parametrization

ATLAS

100 fb-1

Gustaaf Brooijmans

New and Old Gauge Boson Discoveries in Early LHC Data

Z' Model Determination

- One approach to model determination is A_{FB} or $\cos\theta^*$
 - In both cases, reconstruction at larger pseudorapidities important for sensitivity
 - Do not expect this to be well understood early on
 - Detectors not quite as good, higher fake rates, etc
 - Not clear how long it will take to make a clear statement about these parameters
- Branching ratios are of course easier (see later)

Doubly Charged Higgs

• First DØ Run II paper!

Preselection

- Higgs triplet
 - Decay dominantly to μ , τ
 - Pair production (DY) dominant (single production through WW fusion)
- Very clean 4-lepton channel
- 10 fb⁻¹: discovery up to 650 GeV

Analysis

- SSM W'
- Discovery reach ~4.5 TeV with 10 fb⁻¹
- Similar reach with electrons
 - Note very different resolution effects in electrons vs muons
- Then start thinking about couplings etc. (T. Rizzo, arXiv:0704.0235)

CMSTDR

tt resonances

- So far, only events in which top decay jets are distinguishable have been studied in detail
 - Loss of efficiency at higher masses
- Studies using jet mass, substructure, etc. underway

Gustaaf Brooijmans

- ATLAS fast simulation study
 - Use of very high pT btagging
 - B meson decays *outside* first pixel layer! More studies needed to confirm efficiencies
- Overall, could already make a (BR) statement very early on

E6 Isosinglet Quarks

D quarks/20GeV/yet

r.@.,7

- Pair production
 - Typical decays: D -> Zd,
 D -> Wu
 - First study in 41 + 2 jets channel
 - Discovery takes ~10-20
 fb⁻¹ for 600 GeV D
- Single production, and decays to higgs boson under investigation

ATLAS Signal @ 600GeV SM background -SM + Signal @ 600GeV SN-ATLAS-2006-056 M_{Z,jet} (GeV) D quark discovery reach 3σ signa

- Example: QTC
- Select all-leptonic W and Z decays
 - Require W and Z
 candidates to satisfy mass
 constraints
 - A few additional cuts
- Exclusion depends on π_{TC} mass because of BR
- (σ from TCSM)

(GeV)

Μ(ρ_τ)

Excited Electrons

- No low luminosity study available at this time (as far as I could tell)
- Both plots for 300 fb⁻¹, but quite clear that discovery possible up to ~1 TeV for 10 fb⁻¹
- This is electron channel only, muon channel should have similar sensitivity

Heavy Leptons

Other Signals

- Most studies have been done for multiple years at high luminosity, typically 300 fb⁻¹
 - Excited neutrinos $\rightarrow vZ$, eW
 - Other CMS studies? (I used the CMS Physics TDR only)

Conclusions

- High pT leptons are relatively easy to understand, so first discovery channels
 - At the LHC, to a certain extent this may be true for top quarks as well
- If magnitude of couplings is in SM range, discovery range with ~10 fb⁻¹ is in few TeV range
 - For this case, sub-TeV range has been explored by Tevatron
 - So such discovery suggests a 1+ TeV ILC
- Of course, if couplings are smaller....