Resonances in Universal Extra Dimensions

K.C. Kong

Fermilab

LHC4ILC, Fermilab April 12-14, 2007

Outline

- Minimal Universal Extra Dimension:
 - Level 1
 - Level 2: resonances in e^+e^- and $\mu^+\mu^-$ at Tevatron/LHC
- Two Universal Extra Dimensions:
 - (1,0) mode
 - (1,1) mode: resonances in $t\bar{t}$ at Tevatron/LHC
- Summary

Universal Extra Dimensions

(Appelquist, Cheng, Dobrescu, hep-ph/0012100)

• Universal Extra Dimensions is an extra dimension theory with new bosonic coordinate y (spanning a circle of radius R):

$$\Phi(x^{\mu}, y) = \phi(x^{\mu}) + \sum_{i=1}^{\infty} \left(\phi^n(x^{\mu}) \cos\left(\frac{ny}{R}\right) + \chi^n(x^{\mu}) \sin\left(\frac{ny}{R}\right) \right)$$

• Each SM field ϕ (n=0) has an infinite tower of Kaluza-Klein (KK) partners ϕ^n and χ^n with identical spins, identical couplings and unknown masses of order of n/R:

$$S = \int d^4x dy \mathcal{L}_{SM} = \int d^4x \mathcal{L}_{eff}, \qquad E^2 = \vec{p}^2 + p_5^2 = \vec{p}^2 + \left(\frac{n}{R}\right)^2$$

• Bulk interactions: conserve KK number $\Leftarrow p_y$ conservation

• Problem: chiral fermions?

KK number versus KK parity

• The ED is not really a circle, but orbifold S_1/Z_2 :

• Loop corrections generate boundary terms which break KK number n down to KK parity $(-1)^n$

- Additional allowed decays: $2 \rightarrow 00, \, 3 \rightarrow 10, \, \cdots$
- The lightest KK partner at level 1 (LKP) is stable \Rightarrow DM ?
- No tree-level contributions to precision EW observables/need to pair-produce

UED phenomenology

- EW precision constraints: $R^{-1} \ge 300~{
 m GeV}$ (Appelquist, Cheng, Dobrescu, hep-ph/0012100)
- Current Tevatron limit: $R^{-1} > 280$ GeV in $3\ell + \not\!\!E_T$ channel at 95% C.L. (CDF)
- Region preferred by WMAP: $R^{-1} \sim 500 600$ GeV (Kong, Matchev, hep-ph/0509119, Burnell, Kribs, hep-ph/0509118, Servant, Tait, hep-ph/0206071)

(Cheng, Matchev, Schmaltz, hep-ph/0204342, hep-ph/0205314)

 g_1

Looking for level 2 KK partners

- n = 1 $(M_1 = \frac{1}{R})$ is like MSSM and can be discovered: look for n = 2 $(M_2 = \frac{2}{R})$
- Production:

- a, b: kinematically suppressed / c: suppressed couplings

- only V_2 have KK number violating couplings to SM
- Q_2 and L_2 : either forbidden or higher dimensional operator
- Decay:

– a: SM particle is soft / b: direct n = 1 production? / c: resonance

Branching fractions of level 2 Gauge Bosons

- γ_2 : almost Lepto-phobic
- $\gamma_2 + Z_2 + g_2 \rightarrow$ one single bump in dijet

Production/Widths of level 2 Gauge Bosons

• Indirect production is important

Branching Ratios of level 2 KK quarks

(Datta, Kong, Matchev, hep-ph/0509246)

- Large Branching ratios into level 2 gauge bosons
 - $-BR(Q_2 \rightarrow Z_2Q_0) \ge 25\%$
 - $BR(Q_2 \rightarrow \gamma_2 Q_0) \ge 3\%$
 - $BR(q_2 \rightarrow \gamma_2 Q_0) \approx 50\%$
 - $BR(g_2 \to Q_2Q_0 + q_2q_0) \approx 50\%$

Discovery reach for MUED at LHC in inclusive dilepton channel

Two resonances

(Datta, Kong, Matchev, hep-ph/0509246)

- Level 2 resonances can be seen at the LHC:
 - up to $R^{-1} \sim 1$ TeV for 100 fb $^{-1}$, $M^2_{ab} = (p_a + p_b)^2$
 - covers dark matter region of MUED

• Mass resolution:

$$- \, \delta m = 0.01 M_{V_2}$$
 for e^+e^-

$$\delta m = 0.0215 M_{V_2} + 0.0128 \left(rac{M_{V_2}^2}{1TeV}
ight)$$
 for $\mu^+\mu^-$

- Narrow peaks are smeared due to the mass resolution
- Two resonances can be better resolved in e^+e^- channel
- Is this a proof of UED ?
 - Not quite : resonances could still be interpreted as Z's
 - Smoking guns :
 - * Their close degeneracy
 - * $M_{V_2}pprox 2M_{V_1}$ and one single bump in dijet
 - * Mass measurement of W_2^\pm KK mode
- However in nonminimal UED models, degenerate spectrum is not required
 - \rightarrow just like SUSY with a bunch of Z's
 - \rightarrow need spins to discriminate

Two Universal Extra Dimensions on Chiral Square

- Motivation:
 - Possible to avoid proton decay (Appelquist, Dobrescu, Ponton hep-ph/0107056)
 - To cancel anomalies \rightarrow 3 generations (Dobrescu, Poppitz hep-ph/0102010)
- Chiral Square → (n,m) KK-mode (Dobrescu, Ponton, hep-th/0401032) (Burdman, Dobrescu, Ponton, hep-ph/0506334) (Ponton, Wang, hep-ph/0512304)
- Explore different phenomenology: (1,0) mode with $M_{(1,0)} \sim \frac{1}{R}$ (Dobrescu, Kong, Mahbubani, hep-ph/0703231) g_1
 - Spinless Adjoints: uneaten NGB, G_H , W_H and B_H
 - B_H : the lightest assuming the same BC as 5D
 - Tree-level 3-body decays \rightarrow two leptons
 - One-loop 2-body decay \rightarrow a photon

 Q_1

q

q1

Leptons/Photons in Two Universal Extra Dimensions

Resonances in Two Universal Extra Dimensions

(Burdman, Dobrescu, Ponton, hep-ph/0601186)

- (1,1) mode: $M_{(1,1)} \sim \frac{\sqrt{2}}{R}$
 - (1,1) mode is lighter than (2,0) mode
 - Three (neutral) gauge bosons: $G_{\mu}^{(1,1)}$, $W_{\mu}^{(1,1)}$, $B_{\mu}^{(1,1)}$
 - * Loop-induced couplings \rightarrow lepto-phobic
 - * $Br(W^{(1,1)}_{\mu}, B^{(1,1)}_{\mu} \to \ell^+ \ell^-) \sim 1\%$
 - Three (neutral) spinless adjoints: $G_{H}^{(1,1)}$, $W_{H}^{(1,1)}$, $B_{H}^{(1,1)}$
 - * Derivative coupling, $\bar{q}\gamma^{\mu}q\partial_{\mu}X^{(1,1)}_{H} \rightarrow Br(X^{(1,1)}_{H} \rightarrow t\bar{t}) = 1$
- 5 resonances in $t\bar{t}$: $(Br(G^{(1,1)}_{\mu} \rightarrow t\bar{t}) \text{ is small})$
 - But only 3 may be resolved: * $G_H^{(1,1)} + W_\mu^{(1,1)3} \sim 1.1 \frac{\sqrt{2}}{R}$ * $B_\mu^{(1,1)} + W_H^{(1,1)3} \sim 0.97 \frac{\sqrt{2}}{R}$ * $B_H^{(1,1)} \sim 0.86 \frac{\sqrt{2}}{R}$ - Top reconstruction? - Jet-energy resolution? - B-tagging? - A single bump with $\frac{\Gamma}{M} \sim 0.1$?

The Photon Energy Distribution (LC)

(Battaglia, Datta, De Roeck, Kong, Matchev, hep-ph/0502041)

- $\mu^+\mu^- + E_T$
- On-shell $Z_2 \rightarrow \mu_1 \bar{\mu}_1$ is allowed by phase space
- Radiative return due to Z_2 pole at

$$E_{\gamma} = \frac{s - M_{Z_2}^2}{2\sqrt{s}}$$

Summary

- Resonances:
 - Easy to look for
 - Identity is not clear
- 5D Resonances:
 - Two bumps (γ_2 and Z_2) in dilepton mass, one bump (W_2) in transverse mass
 - Their degeneracy in mass indicates UED
 - Widths are very small \rightarrow resolving power depends on detector resolution
 - Dijet at LHC/LC?
- 6D Resonances: lepto-phobic, weakly coupled resonances
 - 5 neutral bumps in $t\bar{t}$ channel
 - Resolving power depends on top reconstruction/jet-energy resolution
 - Need realistic study at LHC/LC and Tevatron

	5D level 1	5D level 2	6D (1,0)	6D (1,1)
		(resonances)		(resonances)
LHC/Tevatron	$4\ell + ot \!$	$\ell^+\ell^-$	$n\ell + m\gamma + E_T$	$tar{t}$
LC	$\ell^+\ell^- + ot\!$	$\ell^+\ell^-$, ISR	?	?