MSSM light Higgs boson scenario

Alexander Belyaev Michigan State University

In collaboration with Ching-Hong Cao, Daisuke Nomura, Kazuhiro Tobe, C.-P. Yuan hep-ph/0609079 hep-ph/070xxxx

Short Summary

- The MSSM scenario with the CP-even Higgs boson as light as 50-60 GeV (and above) is not excluded by LEP2 contrary to common belief
- The MSSM parameter space corresponding to this Light higgs scenario (LHS) is generic
- The entire parameter space corresponding to LHS can be entirely covered by LHC

The present status of the SM

- Based on SU(3)xSU(2)_LxU(1)_Y gauge symmetry spontaneously broken down to SU(3)xU(1)_e:
- Matter: 3 generations of quarks and leptons
- One of the central role is played by Higgs field
 interacts with all fields
 - develops condensate
 - W,Z bosons, lepton and quarks and Higgs field itself acquires mass

Higgs boson is the most wanted particle! The present Higgs mass limit is 114.4 GeV from LEP2 e^+e^- data

Why Supersymmetry is so attractive?

- ▶ relates bosons and fermions $Q|BOSON\rangle = |FERMION\rangle$ AND $Q|FERMION\rangle = |BOSON\rangle$
- extends Poincaré algebra to super-Poincaré algebra with the most general set of space-time symmetries
 - solves fine-tuning problem of SM

provides

gauge coupling unification
 LSP is stable (R-parity):
 perfect DM candidate

 $\Delta M_H^2 \sim M_{SUSY}^2 \log(\Lambda/M_{SUSY})$

allows to introduce fermions into string theories

16

log₁₀Q

MSSM HIGGS sector

two Higgs complex-doublet

provides masses to both up- and down- quarks

ensures anomaly cancellation

 $\Phi_d = (\Phi_d^0, \Phi_d^-) \text{ and } \Phi_u = (\Phi_u^+, \Phi_u^0), \quad \langle \Phi_d \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} v_d \\ 0 \end{pmatrix}, \quad \langle \Phi_u \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_u \end{pmatrix},$ where $\sqrt{v_d^2 + v_u^2} = 2M_W/g = v(246 \text{ GeV}), \quad v_u/v_d = \tan \beta$ > 8 degrees of freedom

3 absorbed into longitudinal components of the W and Z

▶ 5 remains:
$$h = -(\sqrt{2}\text{Re } \Phi_d^0 - v_d) \sin \alpha + (\sqrt{2}\text{Re } \Phi_u^0 - v_u) \cos \alpha$$
$$H = (\sqrt{2}\text{Re } \Phi_d^0 - v_d) \cos \alpha + (\sqrt{2}\text{Re } \Phi_u^0 - v_u) \sin \alpha$$
$$A = \sqrt{2}(\text{Im } \Phi_d^0 \sin \beta + \text{Im } \Phi_u^0 \cos \beta),$$
$$H^{\pm} = \Phi_d^{\pm} \sin \beta + \Phi_u^{\pm} \cos \beta$$

 $\begin{array}{l} \alpha \text{ is } (h,H) \text{ mixing angle; } \tan\beta \text{ and } M_A \text{ define the tree-level Higgs sector} \\ M_{H^{\pm}} = \sqrt{M_A^2 + M_W^2} \\ M_{h,H}^2 = \frac{1}{2} \left[(M_A^2 + M_Z^2) \mp \sqrt{(M_A^2 + M_Z^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta} \right], \quad M_h < M_Z \end{array}$

 * Little" Fine Tuning in MSSM
 * MSSM has a "little problem": M_h < M_Z at the tree-level!
 * Solution to obey M_h > 114.4 GeV LEP2 limit: SUSY scale ≥ 1 TeV top-stop radiative corrections

the price: ~ 1% of fine-tuning

$$m_Z^2 = \frac{|m_{H_d}^2 - m_{H_u}^2|}{\sqrt{1 - \sin^2(2\beta)}} - m_{H_u}^2 - m_{H_d}^2 - 2|\mu|^2$$

is there other way to avoid LEP2 Higgs bound?

Higgs (if there is) prefers to be non-SM like!

$$\begin{split} & \text{MSSM Higgs Interactions with vector bosons} \\ & \mathcal{L}_{H_iVV} = g \, M_W \left(W^+_{\mu} W^{-\mu} \, + \, \frac{1}{2c_W^2} \, Z_{\mu} Z^{\mu} \right) \, g_{H_iVV} \, H_i \\ & \mathcal{L}_{AH_iZ} = \frac{g}{4c_W} g_{AH_iZ} \, Z^{\mu}(H_i \, i \stackrel{\leftrightarrow}{\partial}_{\mu} A), \quad H_i = (h, H) \\ & \mathcal{L}_{\mathcal{H}H^{\pm}W^{\mp}} = -\frac{g}{2} \, g_{_{\mathcal{H}H^+W^-}} W^{-\mu}(\mathcal{H} \, i \stackrel{\leftrightarrow}{\partial}_{\mu} H^+) \, + \, \text{h.c.}, \quad \mathcal{H} = (h, H, A) \end{split}$$

No lose?

$$g_{ZZh}^2 + g_{ZAh}^2 = 1$$

Zh and Ah channels are highly complementary!

Both channels has been studies at LEP2

Similar limits are for $H > \tau \tau$ channel, but $Br(H > \tau \tau)$ is one order of magnitude smaller then Br(H - bb)

Higgs mixing and radiative corrections

$$\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} -s_{\alpha} & c_{\alpha} \\ c_{\alpha} & s_{\alpha} \end{pmatrix} \begin{pmatrix} Reh_{d}^{0} \\ Reh_{u}^{0} \end{pmatrix} \qquad \begin{array}{c} -\pi/2 < \alpha < 0 \\ \textbf{at tree-level} \\ \end{pmatrix}$$

$$\begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} \mathcal{M}_{11}^{2} & \mathcal{M}_{12}^{2} \\ \mathcal{M}_{21}^{2} & \mathcal{M}_{22}^{2} \end{pmatrix} \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} = \begin{pmatrix} M_{H}^{2} & 0 \\ 0 & M_{h}^{2} \end{pmatrix}$$

$$\begin{pmatrix} \mathcal{M}_{11}^{2} & \mathcal{M}_{12}^{2} \\ \mathcal{M}_{21}^{2} & \mathcal{M}_{22}^{2} \end{pmatrix}_{\textbf{tree}} \begin{pmatrix} M_{A}^{2} \sin^{2}\beta + M_{Z}^{2} \cos^{2}\beta & -(M_{A}^{2} + M_{Z}^{2}) \sin \beta \cos \beta \\ -(M_{A}^{2} + M_{Z}^{2}) \sin \beta \cos \beta & M_{A}^{2} \cos^{2}\beta + M_{Z}^{2} \sin^{2}\beta \end{pmatrix}$$

assuming $\tan\beta >>1$ for simplicity

decoupling (SM-like light Higgs):

 $M_A >> M_Z: \quad M_{11}^2 >> M_{22}^2, \quad c_\alpha \simeq 1 \Rightarrow \sin(\beta - \alpha) \simeq 1(\alpha \simeq 0)$ $\bullet \text{ non-decoupling (non-SM-like light Higgs):}$ $M_A \simeq M_Z: \text{ if } M_{11}^2 < M_{22}^2 \Rightarrow c_\alpha \simeq 0, \sin(\beta - \alpha) \simeq 0 \ (\alpha \simeq -\pi/2)$ $M_{11}^2 < M_{22}^2: \text{ never at tree-level but easy realize at 1-loop!}$ $M_{11}^2 < M_{22}^2: \text{ never at tree-level but easy realize at 1-loop!}$

Sample point as an example

$\tan\beta$	M_{H^+}	μ	A_t	M_1/M_2	M_3	M_Q
40	130	600	600	100/200	300	300

 $\delta \mathcal{M}_{22}^2 \simeq \frac{3y_t^4 v^2 s_\beta^2}{8\pi^2} \ln\left(\frac{M_S^2}{m_t^2}\right) + \frac{y_t^4 v^2 s_\beta^2}{32\pi^2} \frac{X_t A_t}{M_S^2} \left(12 - \frac{X_t A_t}{M_S^2}\right) - \frac{y_b^4 v^2 s_\beta^2}{32\pi^2} \left(\frac{\mu}{M_S}\right)^4$

Suppression of the lightest Higgs mass

MSSM parameter scan

Parameter space, CP conserving case

Constraints

parameter	lower limit	upper limit	LEPII $Z\mathcal{H}$ and $A\mathcal{H}$ constraint $\mathcal{H} = (h, H)$
aneta	1.1	50	$g_{ZZ\mathcal{H}}^2 \times Br(\mathcal{H} \to bb) < F_{Z\mathcal{H}}(M_{\mathcal{H}})$
M_{H^+}	100	200	$g_{ZZh}^2 \times Br(A \to bb) \times Br(H \to bb) < F_{Ah}$
μ	-2000	2000	$g_{ZZH}^2 \times Br(A \to bb) \times Br(h \to bb) < F_{AH}$
M_1	50	500	$M_{\chi_1^{\pm}} > 100, M_{\tilde{t}_1} > 100, M_3 > 270 \text{ GeV}$
M_{2}	50	500	Color breaking constraints
M_2	50 50	1000	$A_t^2 < 3(M_{Q3}^2 + M_{U3}^2 + \mu^2 + M_{H_2}^2)$
1VI 3 A	2000	2000	$\Delta \rho_{SUSY} < 2 \times 10^{-3}$
A_t	-2000	2000	$b \rightarrow s\gamma$ SUSY constraint:
MQ3	300	700	$ \Delta Br(b \to s\gamma) < 1 \times 10^{-4}$

CpsuperH is used

(Lee, Pilaftsis, Carena, Choi, Drees, Ellis, Wagner)

Scan Results: ~50 GeV light Higgs boson is allowed!

excluded by:LEP2 Zh searchLEP2 Ah searchLEP2/TEV SUSY searchthe color breaking constraintallowed: $M_h < M_Z$ $M_h > M_Z$

Key-point: SUSY corrections suppressing ττH and bbH couplings in non-universal way!

(Carena, Mrenna, Wagner; Borzumati, Farrar, Polonsky; Guasch, Hollik, Penaranda)

Key-point: SUSY corrections suppressing ττH and bbH couplings in non-universal way!

(Carena, Mrenna, Wagner; Borzumati, Farrar, Polonsky; Guasch, Hollik, Penaranda)

LHS parameter space versus LEP2 constraints

Associated production of Charged – Neutral Higgses would a perfect test of LHS

Iarge WH⁺h coupling scenario makes H⁺h (H⁺A) associate production very special: complementary to LEPII

• $g_{AH+W-} = 1$: does not depend on SUSY parameters at tree-level

H⁺A signal rate

Q.-H. Cao, S. Kanemura, C.-P. Yuan hep-ph/0311083

NLO QCD correction is about 20%

Signal / background study

- $q\bar{q} \to W^* \to A(\to b\bar{b})H^+(\to \tau^+ \nu)$ process $bb\pi^+
 ot E_T$ signature 0.6 0.5 backgrounds, cuts °^a 0.4 $q\bar{q'} \rightarrow W^+ b\bar{b}, \ q\bar{q'} \rightarrow t\bar{b},$ 0.3 $q\bar{q} \rightarrow t\bar{t}, \ qq \rightarrow q't\bar{b}$ 0.2 0.1 80 100 120 140 P₊^b(GeV) $\varepsilon_b = 0.57 \times \tanh\left(\frac{p_T^b}{35 \,\mathrm{GeV}}\right)$ \bullet P_{τ} -dependent b-tagging: basic cuts: $P_T(b, \bar{b}, \pi^+) > 15 \,\text{GeV}, \ |\eta(b, \bar{b}, \pi^+)| < 3.5, \ \Delta R(b, \bar{b}, \pi^+) > 0.4$ + veto for jets and leptons in the central region: $p_T(\text{lepton}) > 10 \text{ GeV}, \text{ and } |\eta(\text{lepton})| < 3$ $p_T(\text{jet}) > 10 \text{ GeV}, \text{ and } |\eta(\text{jet})| < 3.5$
 - ▶ hard cuts: $E_T > 50 \,\text{GeV}, \ p_T^{\pi} > 40 \,\text{GeV}, \ |m_{b\bar{b}} m_A| < 10 \,\text{GeV}$

Tevatron/LHC H⁺A production rates

 $pp(p\bar{p}) \rightarrow H^{*} h(A) \rightarrow \tau^{*} \nu \ b\bar{b} \rightarrow \pi^{*} \ \bar{\nu} \ \nu b\bar{b}$ rates in fb

LHC is sensitive to ~1fb level rate for this signature with 100 fb⁻¹ integrated luminosity

10 fb⁻¹ and 100 fb⁻¹LHC reach for H⁺A production

Significance contour of AH⁺/hH⁺

10 fb⁻¹ and 100 fb⁻¹LHC reach for H⁺A production

Significance contour of AH⁺/hH⁺

Projecting on to tanβ – M_Δ plane H⁺A CMS, 100 fb⁻¹ no stop mixing bb h,H,A \rightarrow µµ h,H,A $\rightarrow \mu\mu$ $H^{\pm} \rightarrow \tau v$, 10⁴ pb⁻¹ 50 $H^{\pm} \rightarrow \tau v$ tan β 0 H-yy A,h→ττ→h±+h⁻ 3·10⁴ pb⁻¹ $A,H,h \rightarrow \tau\tau \rightarrow \ell^{\pm}+h^{\pm}+X = 3 \cdot 10^4 \text{ pb}^{-1}$ 10 $h,H,A \rightarrow \tau\tau \rightarrow e^{\pm}+\mu^{\pm}+X$ hA Wh,tth→γγℓ 5 $h\!\rightarrow\!\gamma\gamma$ Zh LEP II √s= 200 GeV $\rightarrow 4\ell^{\pm}$ $A \rightarrow \gamma \gamma$ ZZ,ZZ* Zh 2 \rightarrow Zh,10⁴pb⁻¹ 100 200 300 400 500 0 m_A (GeV)

Further LHC prospects for Yukawa enhanced processes

 $Y_{MSSM}/Y_{SM} \times \sqrt{Br_{MSSM}/Br_{SM}} \leftrightarrow \tan\beta$

using $tan\beta$ introduces model dependence!

Further LHC prospects for Yukawa enhanced processes

 $Y_{MSSM}/Y_{SM} \times \sqrt{Br_{MSSM}/Br_{SM}} \leftrightarrow \tan\beta$

LHS: features/consequences

- Light MSSM Higgs ~ 50 GeV mass is allowed!
 Light Charged Higgs
 - small ZZh coupling and large WH⁺h coupling

• Intermediate – large μ and A_{μ}

 Large µ>0 and intermediate-heavy gluino provide non-universal corrections to tau and bottom Yukawa couplings suppressing Br(H->bb)

Intermediate-high tanβ

- provides futher suppression of Br(H->bb), in agreement with b->sγ. Light stop and charginos!
- H⁺A : LHC covers the whole LHS parameter space, suggested process is independent of tanβ
- Correlation with Yukawa-enhanced processes, ILC precision tests
 Important tests from B-physics experimets!
- Different look at fine-tuning problem (especially for ~90 GeV M_H)

10 fb⁻¹

100 fb⁻¹

