Precision calculations for $H \to WW/ZZ \to$ 4 fermions with <code>PROPHECY4f</code>

Marcus Weber SUNY at Buffalo

in collaboration with Axel Bredenstein, Ansgar Denner, Stefan Dittmaier

see PRD74 (2006) 013004 [hep-ph/0604011] and JHEP 0702:080 [hep-ph/0611234]

Introduction: $H \to WW^{(*)}/ZZ^{(*)}$ decays

most important decay channels for $m_{
m H}\gtrsim$ 140 GeV

LHC

- ullet most important discovery channels for $m_{\rm H}\gtrsim 130\,{\rm GeV}$
- \bullet most accurate Higgs mass measurement for $m_{\rm H}\gtrsim 130\,{\rm GeV}$ using $H\to ZZ\to 4l$ linear collider
 - measurement of branching fractions to several percent level
- \rightarrow precise theoretical prediction for $H \rightarrow WW^{(*)}/ZZ^{(*)} \rightarrow 4f$ needed

$H \to WW^{(*)}/ZZ^{(*)}$ decays

theoretical status

- $m_{\mathsf{H}} > 2m_V$: $H \to WW/ZZ$ real pair production
 - $\mathcal{O}(\alpha)$ corrections known [Fleischer, Jegerlehner '81, Kniehl '91, Bardin et al '91] some leading higher order [Kniehl, Spira '95; Kniehl, Steinhauser '95] [Ghinculov '95; Frink et al '96]
- $m_{\rm H} < 2m_V$: $H \to WW^{(*)}/ZZ^{(*)}$ three-body decay leading order only [e.g. HDECAY:Djouadi, Kalinowski, Spira '98]

distributions important

- \bullet kinematical reconstruction of Higgs and W/Z
 - \rightarrow invariant mass distributions
- verification of Higgs boson spin and CP:
 - \rightarrow uses angular and invariant-mass distributions [Nelson '88, Soni, Xu '93, Chang et al. '93,

Skjold, Osland '93, Barger et al. '93, Arens, Sehgal '94, Buszello et al. '02, Choi et al '02]

 $\Rightarrow H \rightarrow WW/ZZ \rightarrow {\rm 4}f$ Monte Carlo generator with NLO corrections needed

recent work

PROPHECY4F: generator for $H \rightarrow WW/ZZ \rightarrow 4f$ with EW and QCD corrections related: QED corrections to $H \rightarrow WW/ZZ \rightarrow 4l$: [Carloni-Calame et al '06]

Radiative corrections to $H \rightarrow 4f$

- about 400 Feynman diagrams (Feynman gauge), up to pentagons
- external fermions massless

(a): corrections to W/Z decays (b),(c),(d): only for $q\bar{q}q\bar{q}$ and $q\bar{q}q'\bar{q}'$ final states

NLO Calculation: general remarks

numerical instabilities in Passarino-Veltman tensor integral reduction

 \rightarrow alternative reduction using expansions/numerical integration if necessary

[Denner, Dittmaier '05]

gauge invariant treatment of resonances \rightarrow complex mass scheme idea: mass² = complex pole of propagator consistently use complex mass everywhere:

- in loop integrals
- in derived quantities: $\cos \theta_W = \frac{\mu_W}{\mu_Z}$

 \rightarrow gauge invariant, no double counting but:

- spurious $\mathcal{O}(\Gamma/M) = \mathcal{O}(\alpha)$ terms
- unitariy violated at $\mathcal{O}(\alpha^2)$

[Denner, Dittmaier, Roth, Wieders '05]

- gauge independence: 't Hooft-Feynman gauge and background field method
- UV divergences: cancel after renormalization \rightarrow no dependence on mass scale μ of dimensional regularization
- soft singularities: cancel after real-virtual combination \rightarrow no dependence on log m_{γ}
- collinear singularities: drop out in collinear safe observables (e.g. Γ) \rightarrow no dependence on $\log m_f$
- real corrections: checked against MADGRAPH
- combination of real & virtual contributions: phase space slicing and dipole formalism
- 2 independent calculations
 - \rightarrow 2 computer codes for numerical evaluation
 - \rightarrow full numerical agreement (10 digits for $d\Gamma$)

PROPHECY4F

Features of Monte Carlo generator PROPHECY4F

- $\mathcal{O}(\alpha)$ and $\mathcal{O}(\alpha_s)$ calculation of $H \to WW/ZZ \to 4f$ partial widths and distributions
- non-collinear-safe observables possible
- corrections beyond $\mathcal{O}(\alpha)$ higher order final state radiation, large $m_{\rm H}$ effects
- improved Born approximation for partial widths includes: Coloumb singularity, leading effects for $m_{\rm H}, m_{\rm t} \gg m_{\rm W}$, fitting constant
- phase space integration multi channel Monte Carlo integration adaptive weight optimization

[Berends,Kleiss,Pittau '94]

[Kleiss, Pittau '94]

Partial widths: leptonic

 $\mathbf{H} \rightarrow \nu_{\mathbf{e}} \mathbf{e}^+ \mu^- \bar{\nu}_\mu$

 G_{μ} -scheme

NWA: narrow width approximation IBA: improved Born approximation

Distributions: invariant mass

 $H \rightarrow e^- e^+ \mu^- \mu^+$

$$G_{\mu}$$
-scheme, $m_H = 170 \, \text{GeV}$

 \rightarrow large corrections from photon recombination in Z reconstruction

Marcus Weber

The LHC Early Phase for the ILC, Fermilab, April 12-14, 2007

Distributions: angular

$$\mathbf{H} \to \mathbf{e}^- \mathbf{e}^+ \mu^- \mu^+$$

$$G_{\mu}$$
-scheme, $m_H = 200 \, {\rm GeV}$

 ϕ angle between decay planes of e^+e^- and $\mu^+\mu^-$

Marcus Weber

The LHC Early Phase for the ILC, Fermilab, April 12-14, 2007

 $H \to q q q q$

EW corrections: similar for leptonic, semileptonic and hadronic final states

QCD corrections: $\delta_{\text{QCD}}^{\text{semileptonic}} \approx \frac{\alpha_s}{\pi} = 3.8\%$, $\delta_{\text{QCD}}^{\text{hadronic}} \approx \frac{2\alpha_s}{\pi} = 7.6\%$

contributions to $\Gamma(H
ightarrow qqqq)$

QCD corrections: only type (a) relevant = corrections to W/Z decays

Distributions: invariant mass

 $\mathbf{H} \to \mathbf{eeqq}$

 $H \rightarrow WW/ZZ \rightarrow 4f$ important decay channel

- \bullet discovery and mass measurement at LHC
- distributions important for verification of Higgs properties (spin,CP)

PROPHECY4F: Monte Carlo generator for $H \rightarrow WW/ZZ \rightarrow 4f$

- complete O(α) electroweak and O(α_s) QCD corrections gauge boson resonances: complex mass scheme tensor loop integrals: numerically stable methods
- universal beyond $\mathcal{O}(\alpha)$ corrections: heavy-Higgs effects and final state radiation
- non-collinear safe observables possible

results

- partial width EW corrections up to $\simeq 8\%$ for $m_{\rm H} \lesssim 500 \,{\rm GeV}$ improved born approximation: accurate to within $\lesssim 2\%$ for $m_{\rm H} \lesssim 500 \,{\rm GeV}$
- distributions

EW corrections $\mathcal{O}(10\%)$ with γ -recombination (depending on γ recombination)

• QCD corrections

associated with $W/Z\ decay$

Comparison with HDECAY

 $\mathbf{H} \rightarrow \nu_{\mathbf{e}} \mathbf{e}^+ \mu^- \bar{\nu}_\mu$

HDECAY

- $\bullet\,$ includes leading 1 and 2-loop corrections for large $m_{\rm H}$
- off-shell effects taken into account below threshold

Marcus Weber

The LHC Early Phase for the ILC, Fermilab, April 12-14, 2007