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Starting assumption:

No new (non-SM) physics at LHC after 10 fb−1.

Of course, attention would then focus on Higgs.

The Question:

What precision Higgs physics can LHC do?

Some additional assumptions:

10 fb−1, ∼ 2 years operation [ignore next 290(2990) fb−1]

Assume detector shakedowns complete:
· all calibrations done: e, µ, j, b, τ , /ET (incl. forward region)

That is, we can access all SM Higgs channels we expect to see.

Note: interpret the WG charge of “see SM Higgs” to mean
at discovery, it’s consistent with the SM Higgs hypothesis.
→ We must then go looking for deviations!
· The true starting point is a SM-like Higgs.
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10 FB−1: IS A SM HIGGS DISCOVERED?

(also see talks by A. DeRoeck and B. Mellado)
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ATLAS says...
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ATLAS

· annoying gap between LEP exclusion and 120 GeV

· WBF channels most important for discovery

· entire mass range covered by multiple channels

· for most range, data have Higgs before detectors understood
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CMS says...
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· WBF studies not even quoted – not so developed

(pessimistic compared to ATLAS)

· However, entire MH range covered, from LEP limit up!

(no discovery gap)
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⇒ The Obvious: discovery level varies dramatically with MH

⇒ The Should-Be-Obvious: dissimilar ATLAS/CMS predictions

mean significant improvements still to be made

Things to keep in mind:

1. Some “good” channels impossible,

e.g. tt̄H,H → bb̄ — bad for Yb measurement.

2. WBF-everything will keep getting better.

3. Many channels statistically limited, not systematics.

(S � B in gg → H , but large rate; S � B in WBF, but rate smaller )

→ situation would improve dramatically with few×10 fb−1

– p.6
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IMPROVEMENTS AND LIMITATIONS

(just a couple examples)
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Current tt̄H, H → bb̄ outlook: (30 fb−1) [Cammin et al., ATLAS, 2006]
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. S/B now about 1/6 for MH = 120 GeV

I shape change now very marginal – p.8



And in the (lack of) shape lies the sleeping dragon...

Two types of analysis error in measuring backgrounds:

1. statistical error on sideband measurement

2. systematic error on shape extrapolation to signal region

Significance formula changes: S√
B
→ S√

B(1+B42)

where 4 is the shape uncertainty (a kind of normalization uncer.)

If S/B fixed as lumi ↑, signif. saturates [Cranmer, 2005]:

σ∞ = S/B
4shape

4 = 10% for tt̄H,H → bb̄,

so can never get to 5σ as L → ∞

⇒ limits not just discovery,
but use as measurment

(see also CERN-CMS-NOTE-2006-119) 0
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New work on WBF H → τ+τ− [K. Cranmer, BNL]
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Major issue: /pT resolution

Perform constrained fit to both

MZ and MH , calculate 4χ2 to

determine better consistency with

H → τ+τ− v. Z → τ+τ−

→ recovers a lot of lost signal
→ enhances S/B by factor 4

+ neural net attack on dist’bns, etc.

Plenty more work to do on taus!
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QUANTUM NUMBER MEASUREMENTS

or, “After the champagne”
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Confirm that candidate resonance is SM Higgs

→ SM has very specific predictions for its quantum numbers

• colorless – trivial

• neutral – trivial

• mass – measure as accurately as poss. (cf. DeRoeck & Mellado)

• spin 0
· easy to confirm as boson by decay products
· if H → γγ seen, not S = 1
· S ≥ 2 is exotic – ignore for now

• CP even

• gauge couplings: gW w/ tensor structure gµν

• Yukawa couplings: |Yf | =
mf

v

• spontaneous symmetry breaking potential (λ3H )

I these things get increasingly difficult

→ many look like SM, but we want precision to distinguish BSM
– p.12



• couplings are often regarded as most important – not true!

Note: Dührssen-type analysis

impossible with only 10 fb−1

(absolute H couplings with 300 fb−1)

[hep-ph/0406323]

At 10 fb−1: “consistent w/ SM”
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So what can we do at LHC?

WBF production measures vertex structure (indep. of decay)

CP & spin determination: [hep-ph/0105325,0609075]

gµν of SU(2) v. ΦW µνWµν D-5 operators (CP-even/odd)
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• need about 10x lumi past discovery to bin φjj

→ distributions not vulnerable to NLO QCD [hep-ph/0608158]

→ contamination from gg → Hgg is an issue
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gg → Hgg “contamination” to WBF Hjj signal [hep-ph/0108030]

H

(a)

H

(b)

H

(c)

B +1/3 rate ↑ w/ WBF cuts @ low MH! (no MJV) but different φjj

I rate uncertain to more than a factor 2

→ can ultimately sort out, but not likely by 10 fb−1

Note: SM + D5-even oper. interfere, but QCD does not...

(will help discriminate EW v. QCD Hjj)

At 10 fb−1: “consistent w/ SM”
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WBF turns out to be cricical. How well do we understand it?

Open issues:

1. MJV (minijet veto – QCD radiation pattern from color flow)

at primitive stage, but measure in data (EW v. QCD Zjj)

→ not yet used by ATLAS/CMS; WBF improves a lot with it

· probably under control by 10 fb−1

2. Better understanding of tt̄+jets:

off-shell effects, normalization and shape changes @ NLO

· better theory control now [hep-ph/0703120] but need data

3. Contamination from GF signal + jets: gg → Hgg.

Only partially understood.

Probably take > 10 fb−1 to get under control.
– p.16



SUMMARY

• Current SM Higgs pheno is pessimistic

– many improvements possible and known or expected

• Detailed couplings analysis not possible with 10 fb−1

• CP/gµν analyses marignal by 10 fb−1

(maybe if MH > 150 GeV)

• By 10 fb−1 we will be able to say for sure,

“consistent with Standard Model”, but not much more

• Few×10 fb−1 would dramatically, qualitatively improve all

– p.17



So what is this WBF process anyway?

An incoming quark pair emits a pair of gauge bosons, which fuse;
quarks get scattered far-forward/backward into detector as jets
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→ QCD processes look different – p.18


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

