SM HIGGS AT LHC WITH 10 FB^{-1}

David Rainwater

University of Rochester

- What is discovered?

- Improvements and limitations
- Quantum number measurements

LHC-ILC Higgs working group

April 12, 2007

Starting assumption:

No new (non-SM) physics at LHC after 10 fb⁻¹. Of course, attention would then focus on Higgs.

The Question:

What precision Higgs physics can LHC do?

Starting assumption:

No new (non-SM) physics at LHC after 10 fb $^{-1}$.

Of course, attention would then focus on Higgs.

The Question:

What precision Higgs physics can LHC do?

Some additional assumptions:

10 fb $^{-1}$, ~ 2 years operation [ignore next 290(2990) fb $^{-1}$]

Assume detector shakedowns complete:

· all calibrations done: $e, \mu, j, b, \tau, \not\!\!\!E_T$ (incl. forward region) That is, we can access all SM Higgs channels we expect to see. Starting assumption:

No new (non-SM) physics at LHC after 10 fb $^{-1}$.

Of course, attention would then focus on Higgs.

The Question:

What precision Higgs physics can LHC do?

Some additional assumptions:

10 fb $^{-1}$, ~ 2 years operation [ignore next 290(2990) fb $^{-1}$]

Assume detector shakedowns complete:

<u>Note</u>: interpret the WG charge of "see SM Higgs" to mean at discovery, it's consistent with the SM Higgs hypothesis. \rightarrow We must then go looking for deviations!

 \cdot The true starting point is a <u>SM-like</u> Higgs.

10 FB^{-1} : is a SM Higgs discovered?

(also see talks by A. DeRoeck and B. Mellado)

ATLAS says...

- · annoying gap between LEP exclusion and 120 GeV
- \cdot WBF channels most important for discovery
- \cdot entire mass range covered by multiple channels
- \cdot for most range, data have Higgs before detectors understood

CMS says...

- WBF studies not even quoted not so developed (pessimistic compared to ATLAS)
- · However, entire M_H range covered, from LEP limit up! (no discovery gap)

\Rightarrow The Obvious: discovery level varies dramatically with M_H

- \Rightarrow The Obvious: discovery level varies dramatically with M_H
- ⇒ The Should-Be-Obvious: dissimilar ATLAS/CMS predictions mean significant improvements still to be made

- \Rightarrow The Obvious: discovery level varies dramatically with M_H
- The Should-Be-Obvious: dissimilar ATLAS/CMS predictions mean significant improvements still to be made

Things to keep in mind:

- 1. Some "good" channels impossible, e.g. $t\bar{t}H, H \rightarrow b\bar{b}$ — bad for Y_b measurement.
- 2. WBF-everything will keep getting better.
- 3. Many channels statistically limited, not systematics.

 $(S \ll B \text{ in } gg \rightarrow H, \text{ but large rate; } S \gg B \text{ in WBF, but rate smaller })$

- \Rightarrow The Obvious: discovery level varies dramatically with M_H
- ⇒ The Should-Be-Obvious: dissimilar ATLAS/CMS predictions mean significant improvements still to be made

Things to keep in mind:

- 1. Some "good" channels impossible, e.g. $t\bar{t}H, H \rightarrow b\bar{b}$ — bad for Y_b measurement.
- 2. WBF-everything will keep getting better.
- 3. Many channels statistically limited, not systematics. ($S \ll B \text{ in } gg \rightarrow H$, but large rate; $S \gg B$ in WBF, but rate smaller)
 - \rightarrow situation would improve dramatically with few \times 10 fb⁻¹

IMPROVEMENTS AND LIMITATIONS

(just a couple examples)

Current $t\bar{t}H, H \rightarrow b\bar{b}$ **outlook:** (30 fb⁻¹) [Cammin et al., ATLAS, 2006]

 \triangleright S/B now about 1/6 for $M_H = 120~{\rm GeV}$

shape change now very marginal

And in the (lack of) shape lies the sleeping dragon...

Two types of analysis error in measuring backgrounds:

- 1. statistical error on sideband measurement
- 2. systematic error on shape extrapolation to signal region

Significance formula changes:

$$\frac{S}{\sqrt{B}} \to \frac{S}{\sqrt{B(1+B\triangle^2)}}$$

where \triangle is the shape uncertainty (a kind of normalization uncer.)

If S/B fixed as lumi \uparrow , signif. saturates [Cranmer, 2005]:

 $\sigma_{\infty} = \frac{S/B}{\Delta_{\text{shape}}}$ $\frac{\Delta = 10\% \text{ for } t\bar{t}H, H \to b\bar{b},}{\text{so can never get to } 5\sigma \text{ as } L \to \infty}$

 \Rightarrow limits not just discovery, but use as measurment

(see also CERN-CMS-NOTE-2006-119)

Major issue: p_T resolution

Perform constrained fit to *both* M_Z and M_H , calculate $\Delta \chi^2$ to determine better consistency with

 $H \to \tau^+ \tau^-$ V. $Z \to \tau^+ \tau^-$

 \rightarrow recovers a lot of lost signal \rightarrow enhances S/B by factor 4

+ neural net attack on dist'bns, etc.

Plenty more work to do on taus!

Visible Tau Decay Products

QUANTUM NUMBER MEASUREMENTS

or, "After the champagne"

Confirm that candidate resonance is SM Higgs

- \rightarrow SM has very specific predictions for its quantum numbers
 - colorless trivial
 - neutral trivial
 - mass measure as accurately as poss. (cf. DeRoeck & Mellado)
 - spin 0
 - \cdot easy to confi rm as boson by decay products
 - \cdot if $H\to\gamma\gamma$ seen, not S=1
 - $\cdot \; S \geq 2$ is exotic ignore for now
 - CP even
 - gauge couplings: g_W w/ tensor structure $g^{\mu
 u}$
 - Yukawa couplings: $|Y_f| = \frac{m_f}{v}$
 - spontaneous symmetry breaking potential (λ_{3H})
- these things get increasingly difficult
- \rightarrow many look like SM, but we want precision to distinguish BSM

• couplings are often regarded as most important – not true!

- couplings are often regarded as most important not true!
- λ_{3H} (Higgs pot.) most important (but needs 3000 fb⁻¹) \Rightarrow establishes spontaneous symmetry breaking

- couplings are often regarded as most important not true!
- λ_{3H} (Higgs pot.) most important (but needs 3000 fb⁻¹) \Rightarrow establishes spontaneous symmetry breaking
- $g^{\mu\nu} HVV$ tensor structure is also critical (SSB)

- couplings are often regarded as most important not true!
- λ_{3H} (Higgs pot.) most important (but needs 3000 fb⁻¹) \Rightarrow establishes spontaneous symmetry breaking
- $g^{\mu\nu} HVV$ tensor structure is also critical (SSB)
- In some sense, $Y_f \propto m_f$ is established immediately:
 - \rightarrow becomes far less interesting for a SM-like Higgs candidate
 - · large $Y_{u,d}$ would stand out huge rate and altered y_H dist'bn
 - \cdot small Y_t would stand out no $gg \rightarrow H$ production
 - \cdot large Y_{τ} would stand out for light Higgs huge WBF $\tau\tau$ rate

- couplings are often regarded as most important not true!
- λ_{3H} (Higgs pot.) most important (but needs 3000 fb⁻¹) \Rightarrow establishes spontaneous symmetry breaking
- $g^{\mu\nu} HVV$ tensor structure is also critical (SSB)
- In some sense, $Y_f \propto m_f$ is established immediately:
 - \rightarrow becomes far less interesting for a SM-like Higgs candidate
 - · large $Y_{u,d}$ would stand out huge rate and altered y_H dist'bn
 - \cdot small Y_t would stand out no $gg \rightarrow H$ production
 - \cdot large Y_{τ} would stand out for light Higgs huge WBF $\tau\tau$ rate

Note: Dührssen-type analysis impossible with only 10 fb⁻¹ (absolute *H* couplings with 300 fb⁻¹) [hep-ph/0406323]

At 10 fb⁻¹: "consistent w/ SM"

So what <u>can</u> we do at LHC?

WBF production measures vertex structure (indep. of decay)

CP & spin determination: [hep-ph/0105325,0609075]

 $g^{\mu
u}$ of SU(2) v. $\Phi W^{\mu
u}W_{\mu
u}$ D-5 operators (CP-even/odd)

- need about 10x lumi past discovery to bin ϕ_{jj}
- → distributions not vulnerable to NLO QCD [hep-ph/0608158]
- \rightarrow contamination from $gg \rightarrow Hgg~~\underline{\rm is}$ an issue

 $gg \rightarrow Hgg$ "contamination" to WBF Hjj signal [hep-ph/0108030]

$gg \rightarrow Hgg$ "contamination" to WBF Hjj signal [hep-ph/0108030]

- ightarrow +1/3 rate \uparrow w/ WBF cuts @ low M_H ! (no MJV) but different ϕ_{jj}
- ▶ rate uncertain to more than a factor 2
- \rightarrow can ultimately sort out, but not likely by 10 fb⁻¹
- Note: SM + D5-even oper. interfere, but QCD does not...

(will help discriminate EW v. QCD Hjj)

$gg \rightarrow Hgg$ "contamination" to WBF Hjj signal [hep-ph/0108030]

- ightarrow +1/3 rate \uparrow w/ WBF cuts @ low M_H ! (no MJV) but different ϕ_{jj}
- ▶ rate uncertain to more than a factor 2

 \rightarrow can ultimately sort out, but not likely by 10 fb⁻¹

Note: SM + D5-even oper. interfere, but QCD does not...

(will help discriminate EW v. QCD Hjj)

At 10 fb $^{-1}$: "consistent w/ SM"

WBF turns out to be cricical. How well do we understand it?

Open issues:

- 1. MJV (minijet veto QCD radiation pattern from color flow) at primitive stage, but measure in data (EW v. QCD Zjj) \rightarrow not yet used by ATLAS/CMS; WBF improves a lot with it
 - \cdot probably under control by 10 fb $^{-1}$
- 2. Better understanding of $t\bar{t}$ +jets:

off-shell effects, normalization and shape changes @ NLO

- better theory control now [hep-ph/0703120] but need data
- 3. Contamination from GF signal + jets: $gg \rightarrow Hgg$. Only partially understood. Probably take > 10 fb⁻¹ to get under control.

SUMMARY

- Current SM Higgs pheno is pessimistic
 - many improvements possible and known or expected
- Detailed couplings analysis not possible with 10 fb $^{-1}$
- CP/ $g^{\mu\nu}$ analyses marignal by 10 fb⁻¹ (maybe if $M_H > 150$ GeV)
- By 10 fb⁻¹ we will be able to say for sure,
 <u>"consistent with Standard Model"</u>, but not much more
- Few $\times 10$ fb⁻¹ would dramatically, qualitatively improve all

So what is this WBF process anyway?

An incoming quark pair emits a pair of gauge bosons, which fuse; quarks get scattered far-forward/backward into detector as jets

→ QCD processes look different