Leptonic (and more) Resonances at the LHC

- di-lepton resonances
 - Z'-like resonances
 - ≻ W'
- 3rd family resonances
- Little Higgs
- leptoquarks
- excluding: Higgs, SUSY, excited fermions

Resonances should be relatively easy and quick to discover, but:

- what are they?, in what model do they fit? what are the couplings to fermions and bosons?
- > what can we measure, and with what precision?
 - o production cross section and decay branching ratios
 - o width
 - o interferences (and interference with Drell-Yan for Z')
 - o FB asymmetry
 - rapidity distribution
 - o associated with what other new physics?
 - LHC: a discovery machine
 - ILC: precision measurements

2-body resonances

	e/ μ	τ	ν	j	b	t	γ	W/Z	h
e/ μ	Ζ', G*, ρ _{τc} , H ⁺⁺	LFV	W'	LQ, (2I-2j)	LQ , (2I-2j)	LQ , (2I-2j)	e*, μ*	e*, μ*, ν*, e', μ'	
τ		Ζ', G*, ρ _{τC} , Η ⁺⁺ , Α/Η	W'	LQ , (2I-2j)	LQ , (2I-2j)	LQ , (2I-2j)	τ*	τ* ,τ', ν*	
ν				LQ , (2I-2j)	LQ , (2I-2j)	LQ , (2I-2j)	v*(?)	ν*, ν'	
j				Ζ', G* , ρ _{τc} , Η	π _{TC}	π _{TC}	q*	q*, q', D	D
b					Ζ', G *, ρ _{TC} , Η, h	W '	b*	b*, b', T	D
t						Ζ', G*, ρ _{τc} , Η, <mark>9_{κκ}</mark>	t*	т	т
γ							G *, ρ _{τc} , Η	W'	
W/Z								Ζ', G*, ρ _{τc} , Η, ₩'	W', Z', H
h									H/A

Z'-like resonances

from new U(1)

- > E₆, L-R symmetric model,
- \succ little Higgs (including Z_H, A_H)
- > 3-3-1(including doubly charged)

from extraD's

- > Z_{KK}/γ_{KK} in bulk, TeV-1-size ED: EW constraints → $m_{Z'} \ge ~ 4$ TeV
 - including RS bulk: Z'/γ :
 - flavor dependent coupling [Ledroit et al., hep-ph/0703262]
 - o fermiophobic Z', W' (3-site model, see talk by S. Chivukula)
- > gravitons in RS
 - Higgsless models
 - o measure spin-2 and observe other channels
 - o RS in bulk: lepton and photon couplings negligible → look for top or VB pairs [Agashe et al., hep-ph/0701186]
- > gluon: look for decay to top pairs and polarization

technicolor

- $\succ \rho_{TC}, \pi_{TC}$ BESS
- Higgs (H/A $\rightarrow \mu\mu$, $\tau\tau$, bb, tt)
- Hidden Valley

Experimental issues at LHC

- e^+e^- , $\mu^+\mu^-$: clean signal, little background (Drell-Yan)
 - measure σ , Γ , A_{FB}
- $\tau^+ \tau^-$: reconstruction difficult, but possible
 - measure $\boldsymbol{\tau}$ polarization and spin correlations
- $t\overline{t}$: very large QCD background
 - can be seen if due to strong interaction resonance $g_{\scriptscriptstyle KK} \to tt$

A_{FB} is an important observable

- In a pp collider, we must resort to "guess" that Z' boost is in direction of quark (by opposition to antiquark) forming it
 - reliable for large values of boost (rapidity of Z')
 - but pseudorapidity cut on leptons: $|\eta| < 2.5$
 - o can correct for dilution to a large extent
 - efficiency depends only on Y (given incoming type of quarks) because of the smmetr of the detector
 - some systematic uncertainties (PDF's...)

Probability to be wrong vs Y Ledroit et al., hep-ph/0703262

Z' resonance discovery at the LHC

E6 extensions of SM (superstring inspired)

Observables

1800

Dilepton invariant mass spectrum

Also, Z' rapidity distribution depends on u/d couplings

M Dittmar, A Djouadi, A-S Nicollerat, Phys.Lett. B583 (2004) 111

Z' at the ILC

At the ILC, sensitivity s from Z'-Z interference

- can also be sensitive to high masses (contact-like interaction)

CDDT parametrization

M Carena, A. Daleo, B. Dobrescu and T. Tait, PR D70 (2004) 093009

- very general model with 2 Higgs doublets
- > 15 fermion couplings z_f : $f = e_R^j, l_L^j, u_R^j, d_R^j, q_L^j$ j = 1, 2, 3
- > couplings to quarks are generation-independent $U(1)_z$ charges

$$c_{0} z_{u}, z_{d}, z_{q}$$
 and $z_{l_{i}}, z_{e_{j}}, j = 1 - 3$

 anomaly cancellations and possible new fermions must be taken into account

- "realistic models" for Tevatron

$$U(1)_{B-xL}, \overline{U}(1)_{q-xu}, U(1)_{d-xu}, U(1)_{10-x\overline{5}}$$

LEP bounds from contact ______

$W' \to \ell \; \nu$

W' mass difficult to reconstruct: only transverse mass observable A_{FB} not easily measurable (assume light RH neutrino) v direction unknown m_T is max when cos(θ) =0 can be measured in interference region possibly also in W' → t b, with t polarization

W' couplings more easily measurable at ILC, where cm is known, but is there enough mass? (produced in pairs?)

Z', W' in LRSM

Z', W'

CMS result on W_R'

Full GEANT detector simulation and reconstruction

CMS Physics TDR, CERN/LHCC 2006-021

vector bi-leptons

3-3-1 model: $SU(3)_C \times SU(3)_L \times U(1)_X$

> explains 3 families: anomalies cancel, taking all 3 generations together

e - μ^{-} $au^ V_e$ v_{μ} V_{τ} *e*^c $\boldsymbol{\tau}^{c}$ μ^{c} D, S, T have charges +5/3, -4/3, -4/3fermions: t u С b d S S $(T)_{T}$ D

new vector gauge bosons: Z', W'^{\pm} , $Y^{\pm\pm}$

-essentially no background, and detection possible up to ~ 1.4 TeV

- can measure FB asymmetry, Z' mass
 - B. Dion et al., Phys.Rev. D59 (1999) 075006,
 - B. Brelier and G.A., ATLAS internal note

- at ILC, different 331 models can be distinguished (Barreto et al, hep-ph/0703099)

Scalar bileptons

doubly (and singly) charged Higgs in Higgs triplet models (as in LR symmetric model)

- the small Higgs mass results from non-exact symmetry

 → pseudoGoldstone boson
 (pions have mass because quark masses and e.m. break chiral symmetry)
- quadratic divergences occur at two-loop level ~ 10 TeV

 → model is not complete
 UV completion required at ~ 10 TeV
- Low energy EW constraints rather severe
 - FCNC's at ~ 100 TeV
- New particle content

$$W_{H}^{\pm}, Z_{H}, \gamma_{H} : \sim 1 \text{ TeV}$$

 $T : \sim 1 \text{ TeV}$
 $\phi^{\pm\pm}, \phi^{\pm}, \phi^{0} : \geq \text{TeV}$

$$\begin{split} & \mathsf{W}_{\mathsf{H}}, \, \mathsf{Z}_{\mathsf{H}}, \, \mathsf{A}_{\mathsf{H}} \, arise \, from \, [\mathrm{SU}(2) \otimes \mathrm{U}(1)]^2 \, symmetry \\ & \rightarrow 2 \, mixing \, angles \, (like \, \theta_W): \begin{array}{l} \theta \, \, for \, \mathsf{Z}_{\mathsf{H}} \\ \theta' \, for \, \mathsf{A}_{\mathsf{H}} \\ \end{array} \end{split}$$

G. Azuelos - ILC at early LHC

Measurement of Z_HZh and W_HWh couplings needed to test model

Search for the heavy T quark

Search for the heavy T quark

• quark sector in
$$E_6 : \begin{bmatrix} u \\ d \end{bmatrix}_L, u_R, d_R, D_L, D_R \end{bmatrix} \times 3$$
 families

- present limit: m_D > 199 GeV (PDG)
- > 3 x 4 CKM matrix \rightarrow constraint D-u mixing : $\sin \varphi < 0.07$
- > decays: $D \rightarrow Wu$ (50%); $D \rightarrow Zd$ (25%); $D \rightarrow dH$ (25%)
- → ATLAS study: $p \ p \rightarrow D\overline{D} \rightarrow Zd \ Z\overline{d} \rightarrow \ell \overline{\ell} d \ \ell \overline{\ell} d$
 - process implemented in CompHep and MADGRAPH

R. Mehdivev et al., Eur Phys J C49 (2007) 613

3rd family

Possibly different couplings to the 3rd family:

- LEP constraints weaker
- > topcolor
- distinguish between scalar (A/H) from vector (Z')

... but difficult to measure

- $\succ~Z' \rightarrow \tau \, \tau$: poor resolution in mass reconstruction
 - method assumes collinear approximation: neutrino in same direction as τ , with the τ massless
 - 2 x 3-vectors for charged particles, 1 x 2-vector for missing pT
 - \rightarrow 8 input + 2 constraints for 4 x 3 2 = 10 deg. of freedom
 - works when τ 's are not back to back (not too heavy Z')
 - $_{\rm 0}\,$ good reconstruction at ILC, where $\sqrt{\rm s}$ and $\rm P_{\rm miss}$ is known !
- \succ Z' \rightarrow bb : huge QCD background
- \succ Z' \rightarrow t t : too much background from QCD production of top
 - except if resonance is from a strong interaction process
 - o good for ILC, but limited by mass

further observables for 3rd generation

- can measure FB asymmetry wrt to Z' direction
- Possibility to measure polarization or spin correlations
 through decay of τ or t
 Z' → τ τ m(Z') = 1 T eV

KK excitation of the gluon

UED scenario

D.A. Dicus, C.D. McMullen and S. Nandi, PR D65 (2002) 076007

top resonance from bulk RS KK gluon
- large overlap of KK gluon and top quark wave
functions because both are localized towards TeV brane
B. Lillie, L. Randall and L-T Wang, hep-ph/0701166
- can also measure spin correlations
- graviton resonance to top pairs (or WW)
Agashe et al., hep-ph/0701186

March, L; Ros, E; Salvachúa, B; ATL-PHYS-PUB-2006-002

Jet splitting → Highly boosted di-jet looks like one jet → use algorithm to see if jet splits into two when narrower cone is used

J.M. Butterworth, J.R. Ellis, A.R. Raklev, hep-ph/0702150

Leptoquarks

implemented in CompHep/CalcHep

A. Belyaev et al., *J. High Energy Phys. 09 (2005) 005*

Characterized by: Fermion number: $0 (\ell^+ q)$ or $2 (\ell^- q)$ spin: scalar or vector $(g - \Phi^{\mu} - \Phi_{\mu} \text{ coupling depends on } \kappa_g \text{ and } \lambda_G)$ isospin: $0, \frac{1}{2}, 1$ charge: $\pm 1/3, \pm 2/3, -4/3, -5/3$

$$\begin{aligned} \mathcal{L}_{|F|=0}^{f} &= (h_{2L}\bar{u}_{R}\ell_{L} + h_{2R}\bar{q}_{L}i\tau_{2}e_{R})R_{2} + \tilde{h}_{2L}\bar{d}_{R}\ell_{L}\tilde{R}_{2} + (h_{1L}\bar{q}_{L}\ell_{L} + h_{1R}\bar{d}_{R}\gamma^{\mu}e_{R})U_{1\mu} + \\ &+ \tilde{h}_{1R}\bar{u}_{R}\gamma^{\mu}e_{R}\tilde{U}_{1\mu} + h_{3L}\bar{q}_{L}\vec{\tau}\gamma^{\mu}\ell_{L}\vec{U}_{3\mu} + \text{h.c.} , \\ \mathcal{L}_{|F|=2}^{f} &= (g_{1L}\bar{q}_{L}^{c}i\tau_{2}\ell_{L} + g_{1R}\bar{u}_{R}^{c}e_{R})S_{1} + \tilde{g}_{1R}\bar{d}_{R}^{c}e_{R}\tilde{S}_{1} + g_{3L}\bar{q}_{L}^{c}i\tau_{2}\vec{\tau}\ell_{L}\vec{S}_{3} + \\ &+ (g_{2L}\bar{d}_{R}^{c}\gamma^{\mu}\ell_{L} + g_{2R}\bar{q}_{L}^{c}\gamma^{\mu}e_{R})V_{2\mu} + \tilde{g}_{2}\bar{u}_{R}^{c}\gamma^{\mu}\ell_{L}\tilde{V}_{2\mu} + \text{h.c.} , \end{aligned}$$

LQ limits

Apr. 13, 2007

ATLAS study

Reach with 10 fb⁻¹: \sim 800 and 900 GeV for S (types 1 and 2 respect.) \sim 1000 and 1300 GeV for V (types 1 and 2 respect.) assuming $\Lambda_{\text{eff}} \thicksim \alpha$ and minimal couplings for vector LQs

Apr. 13, 2007

G. Azuelos - ILC at early LHC

Conclusions

- All possible types of 2-body resonances are predicted by new models
- In general, exotic physics probes high masses with high luminosity

→ push for highest energy machine, or at least possibility of upgrade

but

- > possibilities of weak couplings buried in background at LHC
- higher precision attainable at ILC

from Cvetic and Godfrey, hep-ph/9404216

Figure 6: 90% confidence level ($\Delta \chi^2 = 6.3$) regions for the χ , ψ , and η models with $M_{Z'} = 1$ TeV are plotted for P_R^u versus P_R^d versus P_V^ℓ at the *LHC*. The figure reflects a few-fold ambiguity in the determination of these couplings at the *LHC*.

excess fermions

- contact interaction
- virtual gravitons
- ✤ torsion

Ledroit atl-phys-pub-2005-010

Apr. 13, 2007

Spin determination

spin-2 could be determined (spin-1 ruled out) with 90% CL up to graviton mass of 1720 GeV

LQ	F	I ₃	Q_{em}	decay	coupling	β	LQ	F	I ₃	Q_{em}	decay	coupling	β
S_0	2	0	-1/3	$e_L^- u_L$ $e_R^- u_R$ $\nu_e d_L$	$\lambda_{LS_0} \\ \lambda_{RS_0} \\ -\lambda_{LS_0}$	$\frac{\lambda_{LS_0}^2+\lambda_{RS_0}^2}{2\lambda_{LS_0}^2+\lambda_{RS_0}^2}$	V_0	0	0	-2/3	$e_{L}^{-}\overline{d}_{R}$ $e_{R}^{-}\overline{d}_{L}$ $\nu_{e}\overline{u}_{R}$	λ_{LV_0} λ_{RV_0} λ_{LV_0}	$\frac{\lambda_{LV_0}^2+\lambda_{RV_0}^2}{2\lambda_{LV_0}^2+\lambda_{RV_0}^2}$
\tilde{S}_0	2	0	-4/3	$e_R^- d_R$	$\lambda_{R\tilde{S}_0}$	1	\tilde{V}_0	0	0	-5/3	$e_{\overline{R}}\overline{u}_{L}$	$\lambda_{R \widetilde{V}_0}$	1
S_1	2	1 0 -1	2/3 -1/3 -4/3	$\begin{cases} \nu_e u_L \\ \nu_e d_L \\ e_L^- u_L \\ e_L^- d_L \end{cases}$	$\begin{array}{c} \sqrt{2}\lambda_{LS_1} \\ -\lambda_{LS_1} \\ -\lambda_{LS_1} \\ -\sqrt{2}\lambda_{LS_1} \end{array}$	$0 \\ 1/2 \\ 1$	V_1	0	1 0 -1	1/3 -2/3 -5/3	$\nu_{e}\overline{d}_{R} \\ \begin{cases} \nu_{e}\overline{u}_{R} \\ e_{L}^{-}\overline{d}_{R} \\ e_{L}^{-}\overline{u}_{R} \end{cases}$	$\sqrt{2\lambda_{LV_1}}$ λ_{LV_1} $-\lambda_{LV_1}$ $\sqrt{2\lambda_{LV_1}}$	0 1/2 1
$S_{1/2}$	0	1/2 -1/2	-2/3 -5/3	$\begin{cases} \nu_e \overline{u}_L \\ e_R^- \overline{d}_R \\ e_L^- \overline{u}_L \\ e_R^- \overline{u}_R \end{cases}$	$\lambda_{LS_{1/2}} \\ -\lambda_{RS_{1/2}} \\ \lambda_{LS_{1/2}} \\ \lambda_{RS_{1/2}}$	$\frac{\lambda_{RS_{1/2}}^2}{\lambda_{LS_{1/2}}^2 + \lambda_{RS_{1/2}}^2}$ 1	$V_{1/2}$	2	1/2 -1/2	-1/3 -4/3	$\begin{cases} \nu_e d_R \\ e_R^- u_L \\ e_L^- d_R \\ e_R^- d_L \end{cases}$	$\lambda_{LV_{1/2}} \\ \lambda_{RV_{1/2}} \\ \lambda_{LV_{1/2}} \\ \lambda_{RV_{1/2}}$	$\frac{\lambda_{RV_{1/2}}^2}{\lambda_{LV_{1/2}}^2 + \lambda_{RV_{1/2}}^2}}{1}$
<i>Š</i> _{1/2}	0	1/2 - 1/2	1/3 -2/3	$\nu_e \overline{d}_L$ $e_L \overline{d}_L$	$\begin{array}{l} \lambda_{L\tilde{S}_{1/2}} \\ \lambda_{L\tilde{S}_{1/2}} \end{array}$	0 1	$\tilde{V}_{1/2}$	2	1/2 - 1/2	2/3 -1/3	$ u_e u_R $ $ e_L u_R $	$\begin{array}{l} \lambda_{L \tilde{V}_{1/2}} \\ \lambda_{L \tilde{V}_{1/2}} \end{array}$	0 1

from LQ - OPAL

Triplet Higgs

Right-handed interactions?

Z': first sign of extended gauge group ?

÷	Left-Right \$	el:	triplet Higgs						
	$SU(2)_L \times SU(2)_R \times U(1)_{B-L} \xrightarrow{\Delta} SU(2)_L \times U(1)_Y$								
	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow				
	$\mathbf{W}_{\mathbf{L}}^{i}$	$\mathbf{W}^i_{\mathbf{R}}$	С	$\mathbf{W}^i_{\mathrm{L}}$	B				
	\mathbf{g}_{L}	g _R	g'	$\mathbf{g}_{\mathbf{L}}$	$\mathbf{g}_{\mathbf{Y}}$				

- right-handed fermions in doublets → heavy Majorana v_R=N
 o explains low mass of v₁ (see-saw mechanism)
- > W_R , Z_R associated with right-handed sector $W_R \rightarrow eN$, $Z_R \rightarrow ee$
- Iarger GUT groups (includes LRSM)

	χ -Mode	l	η-M	odel	ψ -Model		
	g_V	g_A	gv	g_A	gV	g_A	
Z'ē	$e -\frac{g \tan \theta_W}{\sqrt{6}}$	$-\frac{g\tan\theta_W}{2\sqrt{6}}$	$-\frac{g \tan \theta_W}{4}$	$-\frac{g \tan \theta_W}{12}$	0	$\frac{-g\tan\theta_W\sqrt{10}}{12}$	
$Z'\bar{\nu}_e$	$ \nu_e = -\frac{3g \tan \theta_W}{4\sqrt{6}} $	$-\frac{3g\tan\theta_W}{4\sqrt{6}}$	$-\frac{g \tan \theta_W}{12}$	$\frac{-g\tan\theta_W}{12}$	$-\frac{g\tan\theta_W\sqrt{10}}{24}$	$-\frac{g\tan\theta_W\sqrt{10}}{24}$	
$Z'\bar{u}$	<i>u</i> 0	$\frac{g \tan \theta_W}{2\sqrt{6}}$	0	$\frac{g \tan \theta_W}{3}$	0	$-\frac{g\tan\theta_W\sqrt{10}}{12}$	
Z'ā	$d \frac{g \tan \theta_W}{\sqrt{6}}$	$-\frac{g\tan\theta_W}{2\sqrt{6}}$	$\frac{g \tan \theta_W}{4}$	$\frac{g \tan \theta_W}{12}$	0	$-\frac{g\tan\theta_W\sqrt{10}}{12}$	

TABLE III: Couplings between Z' and fermions in ψ , η and χ models where θ_W is the Weinberg angle.

from Almeida et al., arXiv:hep-ph/0702137v1

top resonance from bulk RS KK gluon

B. Lillie, L. Randall and L-T Wang, hep-ph/0701166

- large overlap of KK gluon and top quark wave functions because both are localized towards TeV brane

- can also measure spin correlations (t_R coupling?)
 experimental issues:
 - b-tagging
 - strong collimation of jets from top and from W's
 jet mass can be used, as in:

W. Skiba, D. Tucker-Smith hep-ph/0701247

- can also have graviton resonance to top pairs (or WW), but higher mass (Agashe et al., hep-ph/0701186)

