Beyond the SM signals at the LHC The LHC Early Phase for the ILC FNAL 12-14 April

> Albert De Roeck CERN and University of Antwerp and the IPPP Durham

Reminder: Mass Reach

Ellis, Gianotti, ADR hep-ex/0112004+ few updates

Units are TeV (except W_LW_L reach)

[®]Ldt correspond to <u>1 year of running</u> at nominal luminosity for <u>1 experiment</u>

PROCESS	LHC 14 TeV 100 fb ⁻¹	SLHC 14 TeV 1000 fb ⁻¹	28 TeV 100 fb ⁻¹	VLHC 40 TeV 100 fb ⁻¹	VLHC 200 TeV 100 fb ⁻¹	LC 0.8 TeV 500 fb ⁻¹	LC 5 TeV 1000 fb ⁻¹
Squarks	2.5	3	4	5	20	0.4	2.5
W _L W _L	2σ	4σ	4.5σ	7σ	18σ	6 σ	90σ
Z'	5	6	8	11	35	8†	30†
Extra-dim (δ =2)	9	12	15	25	65	5-8.5+	30-55†
q*	6.5	7.5	9.5	13	75	0.8	5
Acompositeness	30	40	40	50	100	100	400
Τ <i>GC</i> (λ _γ)	0.0014	0.0006	0.0008		0.0003	0.0004	0.00008

† indirect reach
(from precision measurements)

LHC: High energy: direct mass coverage into the TeV range LC: Precision: large indirect mass reach What for 1-10 fb⁻¹?

This talk

• My mission statement

How much one will know with 1 - 10 fb^{-1} of data in different scenarios, i.e. how much will one know about new observed states and how much scope will there be for other new physics to hide in 1 - 10 fb^{-1} of LHC data.

The scenario that we would like you to consider is the observation of new states of physics beyond the SM. We would like you to cover all possible scenarios of BSM physics *except* missing energy, leptonic resonances and multi gauge bosons

• So what is left?

- Jets, Photons, (b/τ) , top quarks, combined signatures, special signatures, eg heavy stable charged particles, r-hadrons
- Hence: in this talk \Rightarrow
 - New physics with (di)jets
 - New physics with top quark
 - RPV SUSY, Technicolor (jets + leptons, leptons)
 - ED with photons and (non-resonant) leptons
 - Spherical events/Black holes
 - Other exotics (excited quarks & leptons,...)
 - Special signatures, weird scenarios

Initial Dijet studies

Jets : Iterative cone algorithm with R = 0.5 in (η,φ)
Triggers with different tresholds to cover full dijet mass range Adjust dynamically during luminosity ramp-up of the LHC

Access to high masses already for low eg 100 pb⁻¹

Dijets: Ratios

Dijet ratio: $N(|\eta| < 0.5)/N(0.5 < |\eta| < 1.0)$

Systematics Energy scale (5%) PDFs (CTEQ6.1 series) Energy smearing (resolution) Sensitivity to contact interactions for 3 CI scales

Dijets: Contact Interactions

Reach versus start up luminosities

	95% CL	Exclude	d Scale	5σ Discovered Scale			
Luminosity	$100{\rm pb}^{-1}$	$1 {\rm fb}^{-1}$	$10 {\rm fb}^{-1}$	100 pb ⁻¹	$1 {\rm fb}^{-1}$	$10{\rm fb}^{-1}$	
Λ^+ (TeV)	<6.2	<10.4	< 14.8	<4.7	<7.8	<12.0	

 \Rightarrow Reach ~ 12-15 TeV with 10 fb⁻¹

Drell Yan muons

Contact Interactions in the lepton final state channel

Contact Interactions LL 5σ Discovery in CMS at LHC

Reach ~ 20 TeV with 10 fb⁻¹

Dijets

Ultimately, with the highest luminosities:

Scenario	14 TeV 300 fb ⁻¹	14 TeV 3000 fb ⁻¹	$28 \text{ TeV} 300 \text{ fb}^{-1}$	28 TeV 3000 fb ⁻¹
Λ (TeV)	40	60	60	85

Dijets: New Physics Reach Summary

Resonance Model	95% CL E	xcluded M	lass (TeV/c ²)	5σ Discovered Mass (TeV/c ²)			
	$100 {\rm pb}^{-1}$	$1 {\rm fb}^{-1}$	$10 {\rm fb}^{-1}$	100 pb ⁻¹	$1 {\rm fb}^{-1}$	$10 {\rm fb}^{-1}$	
Excited Quark	0.7 - 3.6	0.7 - 4.6	0.7 - 5.4	0.7 - 2.5	0.7 - 3.4	0.7 - 4.4	
Axigluon or Colouron	0.7 - 3.5	0.7 - 4.5	0.7 - 5.3	0.7 - 2.2	0.7 - 3.3	0.7 - 4.3	
E_6 diquarks	0.7 - 4.0	0.7 - 5.4	0.7 - 6.1	0.8 - 2.0	0.8 - 3.7	0.8 - 5.1	
Colour Octet Technirho	0.7 - 2.4	0.7 - 3.3	0.7 - 4.3	0.7 - 1.5	0.7 - 2.2	0.7 - 3.1	
Randall-Sundrum	0.7 - 1.1	0.7 - 1.1	0.7 - 1.1				
Graviton		1.3 - 1.6	1.3 - 1.6	N/A	N/A	N/A	
			2.1 - 2.3				
W'	0.8 - 0.9	0.8 - 0.9	0.8 - 1.0	N/A	N/A	N/A	
		1.3 - 2.0	1.3 - 3.2				
Ζ′	N/A	N/A	2.1 - 2.5	N/A	N/A	N/A	

R-Parity violating Susy

	How stable is the	Large	Event can be	Sparticle
	lightest SUSY	missing	reconstructed	production
	particle (L.S.P.) ?	energy?	fully?	
RPC	Stable	Yes	Usually not	Only in pairs
RPV	Unstable (decays to leptons or jets)	No	Yes	Either singly, or in pairs

Multijets + lepton events + relatively small missing E_{T}

R-parity violation

Less missing E_T More Jets and/or Leptons than RPC SUSY

R-Parity Violating SuSY

Example! No real recent experimental studies

Selection of 3 isolated leptons + 2 jets

 \Rightarrow Discovery of squark/sleptons up to ~ 2 TeV with 10 fb⁻¹

Early Top-quark events

Can we observe an early top signal with limited detector performance? And use it to understand detector and physics?

Top signal observable in early days with no b-tagging and simple analysis (100 ± 20 evts for 50 pb⁻¹) \rightarrow measure σ_{tt} to 20%, m to 10 GeV with ~100 pb⁻¹?

- commission b-tagging, set jet E-scale using W \rightarrow jj peak
- understand detector performance for e, μ , jets, b-jets, missing $E_{T},...$
- \bullet understand / constrain theory and MC generators using e.g. p_{T} spectra

Top Quarks at the LHC

The LHC is a top factory: 1 Hz at startup luminosity Cross section rises factor 10 faster than W/Z

Top: a window to new physics

- Largest Yukawa coupling (proportional to $m_t, \cot \beta$): $H, A \rightarrow t\bar{t}.$
- Strong Dynamics (TC, Topcolor/Top See-Saw, Little Higgs): $\rho_{TC}, \ \eta_{TC}, \ \pi_{TC}, \ Z_L \to t\bar{t}.$
- Extra-dimensions (warped and universal): $g_{KK}, \ G_{KK} \rightarrow t\bar{t}.$
- Supersymmetry (\tilde{t} often the lightest squark): $\tilde{t}_R \rightarrow t \tilde{\chi}^0$.
- LH with T-parity (theories with naturalness argument): $T \rightarrow tA^0$.
- **.**....
- Representative features:

	Model Class	Spin-0	Spin-1	Spin-2
T. Han	Technicolor/Topcolor/RS	imes (nrw/brd)	imes (nrw/brd)	imes (narrow)
Princeton	MSSM	imes (narrow)		
	Little Higgs	imes (narrow)	imes (narrow)	

t-tbar Resonances

- Largest Yukawa coupling (proportional to $m_t, \cot \beta$): $H, A \rightarrow t\bar{t}.$
- Strong Dynamics (TC, Topcolor/Top See-Saw, Little Higgs): $\rho_{TC}, \ \eta_{TC}, \ \pi_{TC}, \ Z_L \rightarrow t\bar{t}.$
- Extra-dimensions (warped and universal): $g_{KK}, G_{KK} \rightarrow t\bar{t}.$

Spin analysis from polar angular distributions of the top quark in the resonance c.m. frame

Barger, Han, Walker Hep-ph/0612016

Same sign top search

Significance of a same sign top excess over SM background as function of the cross section

Technicolor

Technicolor: leptons or leptons +jets

Technicolor

5σ sensitivity curves for $\rho_{\text{TC}} \rightarrow W\text{+}Z \rightarrow$ leptons channel

Technicolor Straw Man model

Sensitivity starting from a few fb⁻¹ of data

Photon Signals: Eg. Extra Dimensions

Signal: single jet + large missing ET

ADD: Arkani - Ahmed, Dimopolous, Dvali

Graviton production! Graviton escapes detection

Signal: single photon + large missing ET

Universal Extra Dimensions

4 lepton channel

								â	면기			
R-1	σ_{Signal} (fb)	$\sigma_{\rm B}$ (fb)	N _{Signal} @30/fb	N _{Background} @30/fb	S/B @30/fb	S ₁₂ @30/fb	$\begin{array}{c c} \mathcal{L} (1/\text{fb}) \\ S_{\text{cP}} = 5\sigma \end{array}$	1/f	ant u	JED 4I cha	nnels at CN	NS
				4 electrons channel				Ľ,	30			
300	1.33E+0		40		36	11	3.7-4.0	^L	-	∆R=20		<u> </u>
500	1.19E+0		35.7		32	10 - 9.8	4.3-4.6	പ്				
700	5.13E-1	6.75E-3	15.9	$1.10~\pm~0.22^{\rm~TH}~\pm~0.06^{\rm~EXP}$	14	6.2 – 5.9 (7.7 – 7.3)*	13 - 14	ñ	10 -			
900	2.23E-1		6.7		6.1	3.5 - 3.3 (4.0 - 3.7)*	46 - 54	5	F		A STATE	E State Stat
				4 muons channel				<u> </u>	F		Constitution of the second	
300	1.72E+1		517		126	42 - 41	< 1	~	- 🖬	1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977		-
500	7.79E+0		234		57	27 – 26	< 1	ij				-
700	2.38E+0	1.35E-1	71.4	$4.06~\pm~0.81^{\rm~TH}~\pm~0.25^{\rm~EXP}$	17	13	2.7 - 3.0	So	-			-
900	7.28E-1		21.8		5.3	6.1 – 5.7 (7.1 – 6.5)*	15 – 18	Ĕ		First data' uncortai	inty	
				2 electrons 2 muons channe	el			<u> </u>	1 – 1		A CONTRACT	
300	7.86E+0		236		49	27-26	< 1	n	ĖŢ	المعججج ومرور	1 I I I I I	- 40
500	6.53E+0		196		41	24 - 23	< 1		_ F¶			🔶 4u 🕴
700	2.84E+0	1.60E-1	85.1	$4.80~\pm~0.96^{\rm~TH}~\pm~0.28^{\rm~EXP}$	18	15 - 14	2.2 - 2.5		-	A STATATO		· · ·
900	1.04E+0		31.2		6.5	7.6 – 7.2	9.5 – 11			ALL DE LE DE		🛨 2e2µ -
												Cura in al
											· •	Sys Inci.
									10 ⁻ '뜨			
									30	0 400 3	500 600	100 800 800
								e				$B^{-1}(GeV/c^2)$
		Rea	ch ·	~900 GeV	tor	R ⁻¹ with	n 10	fb ⁻¹				(00070)

Universal Extra Dimensions

Dijet + Missing E_T final state

Sensitive to KK states with $M \sim 2$ TeV with 10 fb⁻¹

Indirect Search for Heavy Resonances

Tev⁻¹ Extra Dimensions

Kaluza Klein excitations of a gauge boson Interference with the DY SM process modifies the high mass di-lepton spectrum

Direct:	600 fb ⁻¹	6	TeV
Interference :	600 fb ⁻¹	16	TeV

ADD with running gravitational couplings

New! Signatures for a running gravitational coupling in ADD scenario of extra dimensions: virtual graviton exchange

Put a form factor in the graviton KK coupling $M^{D-2} \rightarrow M^{D-2}[1+q^2/t^2M^2]^{-1}$

Hewett, Rizzo to appear

Black Holes Production

If the Planck scale in ~TeV region: can expect Black Hole production

Simulation of a black hole event with $M_{\rm BH} \sim 8~{\rm TeV}$ in CMS

~ Spherical events: Many high energy jets leptons, photons etc.

Quantum Gravity in the lab?

Black Holes

Warning: cross section could be much less than optimistic estimates

For 10 fb⁻¹

Classical approximation to cross-section: large! Black Holes up to 8-10 TeV

•Apparent horizon (AH), not all energy trapped; see eg. hep-ph/0609055 Black holes up to 4-5 TeV

Heavy Leptons

Excited Quarks

 $L = \frac{1}{2\Lambda} \overline{q}_R^* \sigma^{\mu\nu} \left(g_s f_s G_{\mu\nu}^a + g f \frac{\tau}{2} W_{\mu\nu} + g' f' \frac{Y}{2} B_{\mu\nu} \right) q_L + h.c.$

take as reference: $\Lambda = m^*$, $f_s = f = f' = 1$

O. Çakir, C. Leroy, R. Mehdiyev, ATL-PHYS-2002-014

Pr[⊭] > 1800 GeV

 $\eta^{in} < 1.0$

10

$m^{\star}(\text{GeV})$	$\Delta m_{jj}(\text{GeV})$	S	В	S/B	S/\sqrt{B}
1000	170	12396806	16870000	0.73	3018
2000	320	858214	525000	1.63	1184
3000	445	37635	23500	1.60	245
5000	705	601	325	1.85	33
6000	880	75	60	1.25	9.6

Also: $q^* \to qZ$; $q^* \to \overline{q}'W$

Reach ~ 3-5 TeV guarks with 10 fb⁻¹

G. Azuelos

Excited leptons

G. Azuelos

contact interaction : $L_C = \frac{g_*^2}{2\Lambda^2} J_{\mu} J^{\mu}$

Experimental considerations: - high energy e, γ - Z \rightarrow jj, W \rightarrow jj

L = 300 fb⁻¹, Λ = 6 TeV

					/
$m^{\star} \rightarrow$	500	1 TeV	2 TeV	3 TeV	4 TeV
$q\overline{q} \rightarrow e^*e \rightarrow Zee \rightarrow eeee$					
ΔM , GeV	20	38	63	84	
S	242	121	17	2	
S/B	25	76	283	333	
S/\sqrt{B}	77	96	69	26	
$q\overline{q} \rightarrow e^{\star}e \rightarrow Zee \rightarrow eejj$					
ΔM , GeV	40	60	106	180	200
S	4725	2388	358	54	6
S/B	3	16	48	67	-
S/\sqrt{B}	121	192	131	60	-

Reach ~ 2 TeV for 10 fb⁻¹

Recent Studies: New Signatures

Split Supersymmetry

- Assumes nature is fine tuned and SUSY is broken at some high scale
- The only light particles are the Higgs and the gauginos
 - Gluino can live long: sec, min, years!
 - R-hadron formation: slow, heavy particles containing a heavy gluino.
 - Unusual interactions with material
 - eg. with the calorimeters of the experiments!

Gravitino Dark Matter and GMSB

- In some models/phase space the gravitino is the LSP
- Then the NLSP (neutralino, stau lepton) can live 'long'

 \Rightarrow Challenge to the experiments!

Sparticles stopped in the detector,walls of the cavern, or dense 'stopper' detector. They decay after hours---months...

Recent Studies: Special signatures

Stable Massive Particles

SMP	LSP	Scenario	Conditions	$Q_{\rm em}$	$C_{\rm QCD}$	S	Model(s)
$\tilde{\tau}_1$	$\tilde{\chi}_1^0$	MSSM	$\tilde{\tau}_1$ mass (determined by $m^2_{\tilde{\tau}_{L,R}}, \mu, \tan\beta$, and A_{τ}) close to $\tilde{\chi}^0_1$ mass.	0	8	1	Universal Extra Dimensions (KK gluon)
	\tilde{G}	GMSB	Large N, small M, and/or large $\tan \beta$.	± 1	1	$\frac{1}{2}$	Universal Extra Dimensions (KK lepton)
		\tilde{g} MSB	No detailed phenomenology studies, see [23].				Fat Higgs with a fat top (ψ fermions)
		SUGRA	Supergravity with a gravitino LSP, see [24].				4th generation (chiral) fermions
	$\tilde{\tau}_1$	MSSM	Small $m_{\tilde{\tau}_{L,R}}$ and/or large $ an eta$ and/or very large $A_{ au}$.				Mirror and/or vector-like fermions
		AMSB	Small m_0 , large $\tan \beta$.			0	Fat Higgs with a fat top (ψ scalars)
		\tilde{g} MSB	Generic in minimal models.	$\pm \frac{4}{3}$	3	$\frac{1}{2}$	Warped Extra Dimensions with GUT parity (XY gaugino)
$\tilde{\ell}_{i1}$	\tilde{G}	GMSB	$\tilde{\tau}_1$ NLSP (see above). \tilde{e}_1 and $\tilde{\mu}_1$ co-NLSP and also SMP for small tap β and μ			0	5D Dynamical SUSY-breaking (xyon)
	τ̃.	ãMSB	small $\tan \beta$ and μ .	$-\frac{1}{3},\frac{2}{3}$	3	$\frac{1}{2}$	Universal Extra Dimensions (KK down, KK up)
$\tilde{\chi}_1^+$	$\tilde{\chi}_1^0$	MSSM	$m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} \lesssim m_{\pi^+}$. Very large $M_{1,2} \gtrsim 2$ TeV $\gg \mu $ (Higgsino region) or non-universal gaugino masses $M_1 \gtrsim 4M_2$, with the latter condition relaxed to $M_1 \gtrsim M_2$ for $M_2 \ll \mu $. Natural in O-II models, where simultaneously also the \tilde{g} can be long-lived near $\delta_{\rm GS} = -3$.	$\epsilon < 1$	1	<u>1</u>	4th generation (chiral) fermions Mirror and/or vector-like fermions Warped Extra Dimensions with GUT parity (XY gaugino) GUT with $U(1) - U(1)'$ mixing
		AMSB	$M_1 > M_2$ natural. m_0 not too small. See MSSM above.			2	Extra singlets with hypercharge $Y = 2\epsilon$
\tilde{g}	$\tilde{\chi}_1^0$	MSSM	Very large $m_{\tilde{q}}^2 \gg M_3$, e.g. split SUSY.				Millicharged neutrinos
	\tilde{G}	GMSB	SUSY GUT extensions [25–27].	2	2	$0/\frac{1}{2}/1$	"Technibaryons"
	\tilde{g}	MSSM	Very small $M_3 \ll M_{1,2}$, O-II models near $\delta_{\rm GS} = -3$.			2,1	reennouryons
		GMSB	SUSY GUT extensions [25–29].				
\tilde{t}_1	$\tilde{\chi}_1^0$	MSSM	Non-universal squark and gaugino masses. Small $m_{\tilde{q}}^2$ and M_3 , small $\tan\beta$, large A_t .			hep	-ph/06110402
\tilde{b}_1			Small $m_{\tilde{q}}^2$ and M_3 , large $\tan \beta$ and/or large $A_b \gg A_t$.				

Stable Massive Particles are not a rarity at all (it seems)...

Recent analyses

• GMSB: Non-pointing photons GMSB para

GMSB parameters N=1 $\tan\beta=1$ $\operatorname{sgn}\mu=1$ $M_m=2\Lambda$

 χ ct lifetime extraction with ~20% precision

• GMSB: long living staus

Split SUSY

Uncorrelated with any beam crossing No tracks going to or from activity

Split Susy

Total Number of Stopped Gluinos

Arvanitaki, Dimopoulos, Pierce, Rajendran, JW hep-ph/0506242

Hidden Valley Physics?

New possible phenomena that could occur in these models

- Higgs decays to two [or more] long-lived particles
 - <u>Aside</u> on classes of possible decays of new particles
- Z' decays to the v-sector:
 - Final state with many particles, possibly long-lived
- LSP decays to the v-sector
 - Degradation of MET signal
 - Wide array of complex final states

Some Hidden Valley Signals

The Fear Factor: A real challenge for the triggers at the LHC

New Discovery Mode for the Higgs?

M. Strassler & K. Zurek 5/2006

ATLAS Rome-Seattle working group:

New: (Colour) Strings at the LHC

Macro-strings: new strong interactions & new quarks m_Q > several hundered GeV $\Lambda_{IC} \lesssim keV$: Anomalous curvature

Markus Luty/Aspen 07

• Strings do not break up \Rightarrow Stringy objects in the detector.

- End points are massive quarks (quirks)
- The strings can oscillate \Rightarrow strange signature in detectors

Summary

- LHC: prepared for searches for many new scenarios
- Already with 10 fb⁻¹ the region covered will be for massive particles with mass more than 1 TeV (several TeV in most cases)
 - Both for discovery or exclusion.
- Note that new experiments are new ⇒ Ramping up will take time Be patient!

 E Constrained MSUGPAL
- Early findings obviously very relevant for the ILC
 - may set initial energy for a LC
 - may affect detector choices
- For this workshop:
 - What do we learn from the (non) observation of new particles?

Discovery/Luminosity Roadmap?

Backup slides

Dijets: Z' resonances

With the CMS detector

Transplanckian effects

Black Holes

simulation in ATLAS

- selection of spherical events
- M_{BH} reconstructed for each event
- reconstruction of M_P from the cross section

ds/dM_{BH}

- given the energy distribution for $\rm M_{BH}\,\Rightarrow T_{H}$

How do these R-hadrons interact with matter?

R-Hadrons

(e.g. A Kraan hep-ph/0404001)

Gluino interactions suppressed as 1/M²
u,d quarks interact but with a kinetic energy of order 1 GeV
⇒ deposite only 10-15% of energy while passing through ATLAS/CMS calorimeters

This will be a remarkable signature
Also: charge flip while passing through matter

Understanding of travel of heavy particles through matter good enough?

Further: anomalous de/dx, time-of-flight measurements. Trigger is a challenge

Split Susy Density of Stopped Gluinos 300 GeV gluino Atlas Detector $\eta = 0.5$ $\eta = -0.5$ $\eta = -1$ $\eta = 0$ $\eta = 1$ 4.15 m 3.65 m Transverse Distance 3.15 m $\eta = 1.5$ 2.65 m 2.15 m 1.65 m $\eta=2$ 1.15 m -6 m -5 m -3 m -2 m0 m-4 m 1 m 2 m3 m 5 m -1 m 4 m 6 m Longitudinal Distance Beamline

Not uniformly distributed in detector No tracks going into or out of calorimeter

Arvanitaki, Dimopoulos, Pierce, Rajendran, JW hep-ph/0506242

Black Hole Searches

Extra dimensions

Hypothesize that there are extra space dimensions

Volume of bulk space » volume of 3-D space Hypothesize that gravity operates throughout the bulk

SM fields confined to 3-D

Then unified field will have "diluted" gravity, as seen in 3-D

With n-D gravity mass scale=weak mass scale -> no hierarchy problem!

Can experimentally access quantum gravity!

Missing energy signatures Black hole production

But extra dimension is different length scale from "normal" ones

-> new scale to explain

