SM Higgs Searches in the Early Phase of the LHC with ATLAS Bruce Mellado University of Wisconsin-Madison On Behalf of the ATLAS Higgs WG

LHC4ILC Workshop, Fermilab 04/12/07

Outline

Introduction

Most relevant observation channels

- ≻Η→γγ
- ≻ttH→bb
- ≻Η→ττ
- ≻H→ZZ^(*)→4I
- ≻H→WW(*)→IIvv
- >Other channels
- **Summary**

Focus on what we can do with 10 fb⁻¹ of data

Main Decay Modes

↓5σ signal significance may be achieved for SM M_H>120 GeV and in most of the MSSM for 10 fb⁻¹ (understood data)
 >Improvements and new final states with H→γγ, ττ, WW^(*) not included
 >Caveat: Higgs feasibility assumes nominal detector performance and present understanding of cross-sections

Bruce Mellado, LHC4ILC, 04/12/06

5

SM Higgs + \geq 2jets at the LHC

Wisconsin Pheno (D.Zeppenfeld, D.Rainwater, et al.) proposed to search for a Low Mass Higgs in association with two jets with jet veto

Central jet veto initially suggested in V.Barger, K.Cheung and T.Han in PRD 42 3052 (1990)

Low Mass SM Higgs: $H \rightarrow \gamma \gamma$

	Higgs mass (GeV)	80	90	100	110	120	130	140	150
	Cross-section (pb)	38.4	32.4	27.8	24.2	21.2	18.8	17.0	15.4
	Branching ratio (%)	0.089	0.119	0.153	0.190	0.219	0.222	0.193	0.138
8	$\sigma \times BR \ ({\rm fb})$	34.2	38.6	42.5	46.0	46.4	41.8	32.8	21.2
2	Acceptance	0.29	0.38	0.44	0.48	0.51	0.53	0.55	0.58
	Mass resolution (GeV)	1.11	1.20	1.31	1.37	1.43	1.55	1.66	1.74

↓Signal to background for inclusive H→γγ is 3-4% need excellent Higgs mass resolution of about 1%

ATLAS TDR

Constant term in EM resolution needs to be understood to c_{tot}<0.7%</p>

>Use cosmics, minimum-bias for first crude look at cell inter-calibration

➢Use Z→ee for absolute EM scale and refined cell inter-calibration

*Need O(10⁵) events or <1 fb⁻¹

>Use Z \rightarrow ee γ , $\mu\mu\gamma$ to study detector response to photons

Higgs Mass Reconstruction

Expect about 50% of events to have at least one converted photon, but can achieve <1.2% mass resolution</p>

Improvements to Baseline Inclusive Analysis

ATLAS is working on significant improvements

>QCD Higher order corrections

>Use of discriminating variables

*For instance, we get 30-40% improvement from Higgs P_T in likelihood analysis

Classification of events according to jet multiplicity

Classification of events according to Higgs mass reconstruction quality

Low Mass SM Higgs: ttH→bb

Complex final state: ttH(→bb)→lepton+v+bbbb+jj

Analysis very sensitive to b-tagging efficiency (ε_b⁴)
 ➢ Parton/Hadron level studies → ε_b ≥60% needed
 ▲ Need ~100 times rejection against light jets and ~10 times against charm to suppress ttjj

4 May achieve $3-5\sigma$ effect for $M_H = 120$ GeV and 30 fb⁻¹

Need to address issues related to background shapes and differences in hadronic scales for light and b-jets

14

15

Main Detector Requirements (ATLAS)

 $\blacksquare Missing E_{T} reconstruction is a challenge (even with MC!)$

HMissing E_T is crucial to reconstruct Higgs mass

- Require mass resolution of <10%</p>
- > Hadronic calibration with data: combination of
 - A Minimum bias (low P_T depositions)
 - *di-jets, Z \rightarrow ll+jets (γ -jet) events, W $\rightarrow \tau \nu$ for high P_T depositions.
 - Enough data with 1 fb⁻¹ to cover necessary phase space to calibrate detector for Higgs discovery

In order to suppress fake leptons (QCD background) to a level <10% of the irreducible background we need to achieve combined 10⁷ rejection with lepton ID

> May be achieved for $H \rightarrow \tau \tau \rightarrow II$ (I=e,µ)

*May achieve >10⁴ per lepton

> Checking TDR QCD rejection estimates for $H \rightarrow \tau \tau \rightarrow Ih$

↓Two independent ways of extracting Z→ττ shape > Data driven and MC driven > Similar procedure has been defined for H→WW^(*)

Zbb \rightarrow 4l rejection versus signal efficiency using track isolation and track impact parameter

²⁰

$H \rightarrow ZZ(*) \rightarrow 41$ event rates using for 30 fb⁻¹ using NLO rates for signal and backgrounds.

SM Higgs $H \rightarrow WW^{(*)} \rightarrow 2I2_V$

Strong potential due to large signal yield, but no narrow resonance. Left basically with event counting experiment

Background Suppression and Extraction

Not able to use side-bands to subtract background. This makes signal extraction more challenging. Need to rely on data rather than on theoretical predictions

Definition & understanding of control samples is crucial

ttbar suppression

- \blacksquare Jet veto (understand low P_T jets)
- Semi-inclusive b-tagging or "top killing" algorithm
- <u> Combined rejection of >10 times</u>

Control Samples for $H \rightarrow WW^{(*)}$

↓Main control sample is defined with two cuts
 ≻∆φ_{||}>1.5 rad. and M_{||}>80 GeV
 ↓Because of tt contamination in main control sample, need b-tagged sample (M_{||} cut is removed)

Summary of Detector Performance Requirements (ATLAS)

Combination of multiple channels will require a certain understanding of all signatures and sub-detectors

> One fb⁻¹ of usable data (or less) will be needed for calibration

H→γγ (+0,1,2 jets)	100 <m<sub>H<150</m<sub>	γ calibration (c _{tot} <0.7%) γ/jet separation (>1000 rejection for quark jets for ε _γ =80%)
ttH, H→bb	80 <m<sub>H<130</m<sub>	<mark>b-tagging (</mark> ε _b =60%, 100/10 rejection against light/c jets) extraction of background shape

Summary of Detector Performance Requirements (ATLAS)

H→ττ, τ→l,h (+0,1,2 jets)	110 <m<sub>H<150</m<sub>	Missing E_T (<10% Higgs mass resolution), lepton ID (>10 ⁷ fake suppression with ID), jet tagging (5%/10% energy scale uncertainty for central/forward jets), central jet veto (need to address low E_T jet resolution requirements)
H→ZZ ^(*) , Z→4I	120 <m<sub>H<600</m<sub>	<mark>Lepton isolation/efficiency (</mark> achieve ~100/1000 rejection against Zbb/tbb for ε _{lepton} ~90%)
H→WW ^(*) , W→Iv (+0,1,2 jets)	120 <m<sub>H<200</m<sub>	"top killer" (>10 rejection), jet tagging (5%/10% energy scale uncertainty for central/forward jets), jet veto

Summary and Outlook

Early discovery of low mass Higgs is challenging. Combination of multiple independent channels adds robustness to analyses

>One fb^{-1} of usable data (or less) will be needed for calibration

ATLAS is currently re-evaluating sensitivity to observation of SM Higgs. Final results expected this year

>Significant improvement of sensitivity expected

Data-driven methods for the extraction of background are well defined for Higgs searches

>The background extraction in $H \rightarrow WW^{(*)}$ analyses is complex. Need input from theorists to improve theoretical uncertainties on contribution from gg \rightarrow WW and single top production (contributing to gg \rightarrow WWbb)

>Need to address the issue of extracting the shape of the bb inv. mass spectrum in ttbb and ttjj final states

Heavy MSSM Higgs

Improvement to the standard inclusive analysis improve the discovery potential using the shape of kinematical variables ⇒ one has to assume kinematical knowledge

Create a likelihood based on $P_T(\gamma\gamma)$ and $\cos\theta^*(\gamma\gamma)$

- ⇒ 30-40% improvement of the statistical significance
- ⇒ Currently study of robustness of this
- ⇒ Other studies : number of jets (related to VBF analysis)

Inclusive $H \rightarrow \gamma \gamma$

Normalization of $Z \rightarrow \tau \tau$ using $Z \rightarrow ee, \mu \mu$

 $\blacksquare Z \rightarrow ee, \mu\mu$ offers about 35 times more statistics w.r.t to $Z \rightarrow \tau\tau \rightarrow II$

 \succ Ratio of efficiencies depends weakly with $M_{\rm HJ}$ and can be easily determined with MC after validation with data

Control Samples for $H \rightarrow WW^{(*)}$

Define:

- $\alpha_{WW} = (QCD WW bg)/(QCD WW in control samp.)$
- $\alpha_{tt} = (tt bg)/(tt in b-tagged control sample)$

• α_{tt}^{WW} = (tt in WW sample)/(tt in b-tagged sample)

- ↓Contribution in signal-like region from gg→WW is small is 10-15%. Very hard to separate gg→WW from qq →WW in data . Unfortunately, kinematics are different (gg→WW is more signal-line)
 - So far we have assumed a 100% uncertainty on the cross-section
 - > Need input from theorists to improve this

Thanks to

N.Kauer

List of Feasible Channels (SM Higgs with M_{H} <200 GeV)

Produc	tion	Decay	mass ranges	
eeeee t	Gluon-Fusion	$H \rightarrow ZZ \rightarrow 4l$	110 GeV - 200 GeV	
t - H - t	$(gg \rightarrow H)$	$H \to WW \to l \nu \ l \nu$	110 GeV - 200 GeV	
9 9		$H \rightarrow \gamma \gamma$	110 GeV - 150 GeV	
q'	WBF	$H \rightarrow ZZ \rightarrow 4l$	110 GeV - 200 GeV	
W, Z	(qq H)	$H \to WW \to l\nu \ l\nu$	110 GeV - 190 GeV	
W Z = -		$H \to \tau \tau \to l \nu \nu l \nu \nu$	110 GeV - 150 GeV	
		$H \to \tau \tau \to l \nu \nu had \nu$	110 GeV - 150 GeV	
		$H \rightarrow \gamma \gamma$	110 GeV - 150 GeV	
eeco t	$t\bar{t}H$	$H \to WW \to l\nu \ l\nu \ (l\nu)$	120 GeV - 200 GeV	
		$H \rightarrow b\bar{b}$	110 GeV - 140 GeV	
Ē		$H \rightarrow \tau \tau$	110 GeV - 150 GeV	
70000 t		$H \rightarrow \gamma \gamma$	110 GeV - 120 GeV	
N W Z C	$\overline{W}H$	$H \to WW \to l\nu \ l\nu \ (l\nu)$	150 GeV - 190 GeV	
		$H \rightarrow \gamma \gamma H \rightarrow bb$	110 GeV - 120 GeV	
q' H	ZH	$H \rightarrow \gamma \gamma H \rightarrow bb$	110 GeV - 120 GeV	