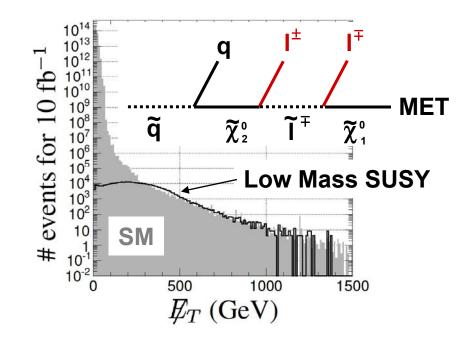
Aspects of Missing Energy at the LHC

R. Cavanaugh University of **Florida**

C	MS	

- Physics Motivation
- Traditional Calorimetric Methods
- Environmental Challenges at the LHC
- Outlook: Energy Flow Methods


LHC Early Phase for the ILC, Fermilab, 13 April 2007

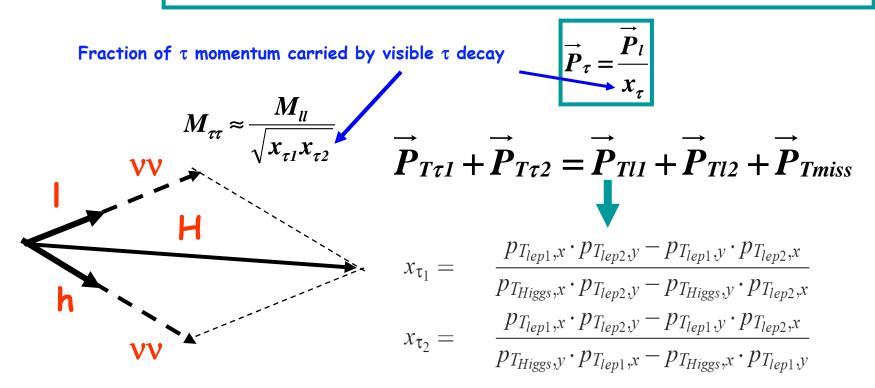


Physics Motivation

- "Small" Missing Energy
 - Standard Model Physics
- Experimental Challenge
 - Understanding QCD and other environmental bkgs.
 - good low-energy resolution

- "Large" Missing Energy
 - New Physics
- Experimental Challenge
 - Understanding Tails!

R. Cavanaugh, Florida, LHC Early Phase for the ILC, FNAL


Physics Motivation

• $H \rightarrow \tau \tau$ Mass Reconstruction

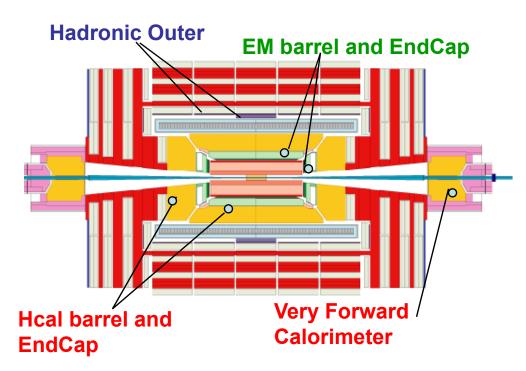
Slide from B.Mellado

Assume tau decay products are collinear to tau direction

- $x_{\tau 1}$ and $x_{\tau 2}$ can be calculated if the Missing E_T is known
- Good Missing E_T reconstruction (response & resolution) essential

F Missing Transverse Energy

- Definition
 - $-\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}} = \Sigma(E_n \sin \theta_n \cos \phi_n \hat{\mathbf{i}} + E_n \sin \theta_n \sin \phi_n \hat{\mathbf{j}}) = E_x^{\mathrm{miss}} \hat{\mathbf{i}} + E_y^{\mathrm{miss}} \hat{\mathbf{j}}$
- Traditional Approach
 - Sum over Calibrated Calorimeter Objects
 - Apply Corrections a posteriori


• **MET Resolution**
$$\frac{\sigma}{E} = \frac{A}{\sqrt{E}} \oplus \frac{B}{E} \oplus C$$
 (E = "Scalar Sum ET")

- A = "Stochastic" Term; B = "Noise" Term; C = "Constant" Term
- Important considerations
 - A: Good Hermitic coverage, Energy Resolution
 - A: Compensating Calorimeter Response
 - B: Electronic Noise
 - B: Pile-up and Underlying event
 - B: High Magnetic Field (sweeps out low pt particles)
 - C: Energy loss due to inactive material and punch through
 - C: Other residual non-linearities

The CMS Calorimeters

Forward calorimeter 2.9 < η < 5:

Fe/quartz fibers $\Delta \eta \times \Delta \phi$ = ~0.175× 0.17

Long fibers collect light from the entire length of the calorimeter,

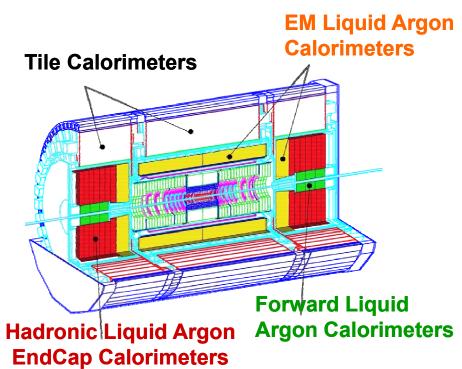
sensitive to both EM & hadronic components Short fibers begin further inside calorimeter, sensitive to hadronic component

EM calorimeter $|\eta| < 3$:

PbW0₄ crystals (forward) 1 longitudinal section/preshower 1.1 λ $\Delta\eta \times \Delta\phi = 0.0174 \times 0.0174$

Central Hadronic $|\eta| < 1.7$:

Brass/scintillator 2 + 1 Hadronic Outer – long. sections $5.9 + 3.9 \lambda (|\eta| = 0)$ $\Delta \eta \times \Delta \phi = 0.087 \times 0.087$


Endcap Hadronic 1.3< |η| < 3 :

Brass/scintillator +WLS 2/3 longitudinal sections 10λ $\Delta\eta \times \Delta\phi = \sim 0.15 \times 0.17$

The ATLAS calorimeters

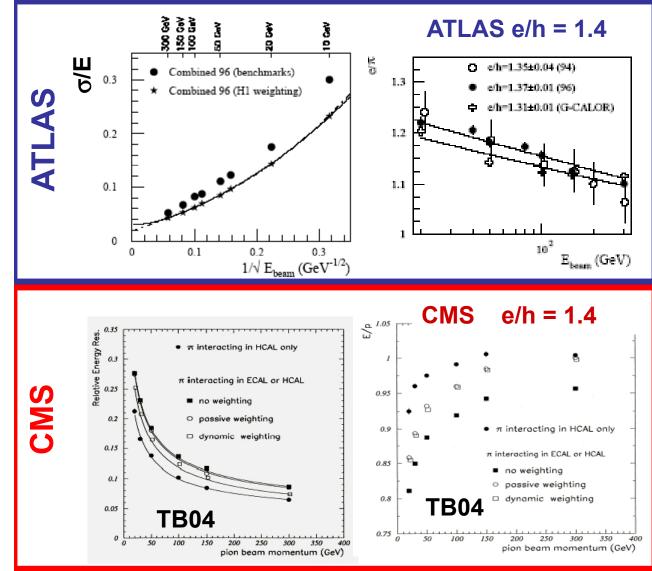
Forward calorimeter 3.1 < η < 4.9 :

EM Cu/LAr – HAD W/Lar 3 longitudinal sections – 9 λ $\Delta\eta \times \Delta \phi = 0.2 \times 0.2$

EM accordion $|\eta| < 3.2$:

Pb/LAr 3 longitudinal sections 1.2 λ + preshower

 $\Delta\eta \times \Delta\phi$ = 0.025 × 0.025 and higher


Central Hadronic $|\eta| < 1.7$: Fe / scintillator 3 longitudinal sections 7.2 λ $\Delta\eta \times \Delta \phi = 0.1 \times 0.1$ and higher

End Cap Hadronic $1.5 < \eta < 3.2$ Cu/LAr – 12 λ 4 longitudinal sections $\Delta\eta \times \Delta \phi < 0.2 \times 0.2$

Calorimeter Calibration & Performance

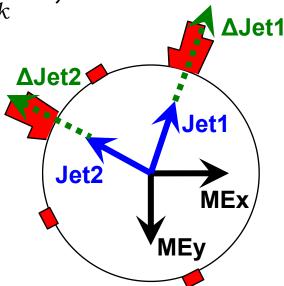
$$\frac{\sigma}{\mathrm{E}} \approx \frac{42\%}{\sqrt{E}} \oplus 2\%$$

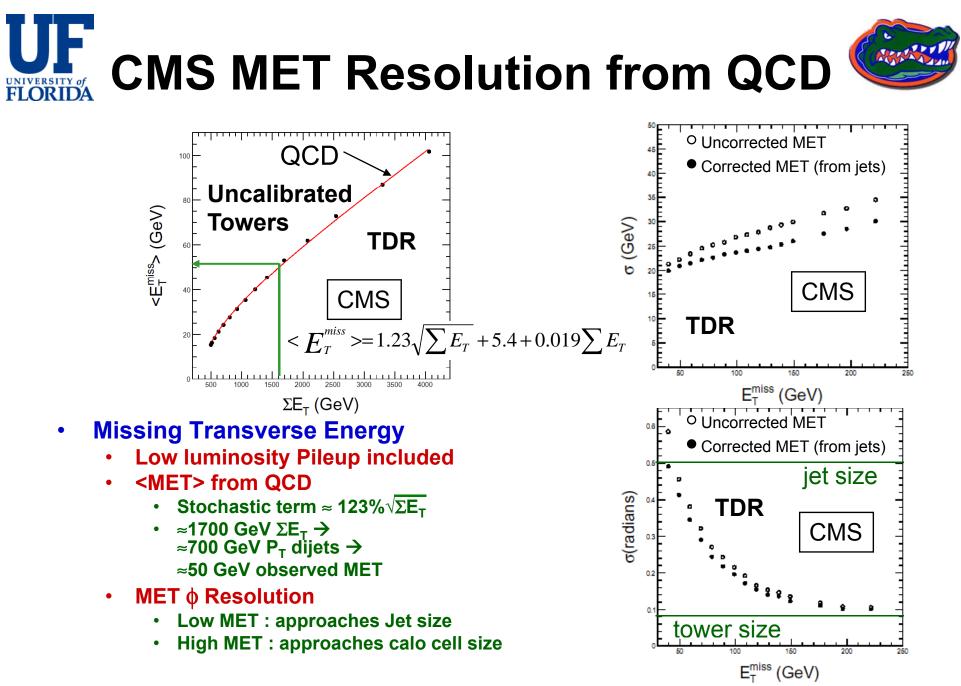
Both calorimeter systems reach the design performances after calibrating for non-compensation (e/h)

$$\frac{\sigma}{\mathrm{E}} \approx \frac{90\%}{\sqrt{E}} \oplus 7\%$$

Latest from **TB06** (additonal improvements being studied)

13 April, 2007

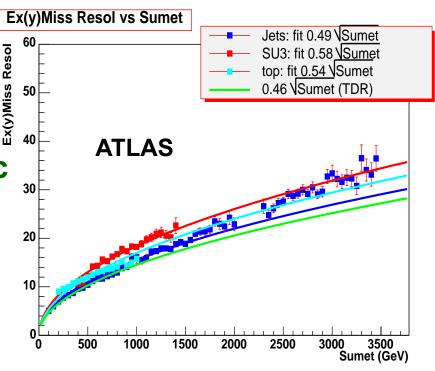

R. Cavanaugh, Florida, LHC Early Phase for the ILC, FNAL


UF A posteriori Corrections to MET

• Correct for Jet Energy Scale and (optionally) muons:

$$\mathbf{E}_{\mathbf{T}}^{\mathbf{miss}} = -\sum_{i} \mathbf{E}_{\mathbf{T},i}^{\mathbf{tower}} - \sum_{j} \left(\mathbf{p}_{\mathbf{T},j}^{\mathbf{corr},jet} - \mathbf{p}_{\mathbf{T},j}^{\mathbf{raw},jet} \right) - \sum_{k} \mathbf{p}_{\mathbf{T},k}^{\mu}$$

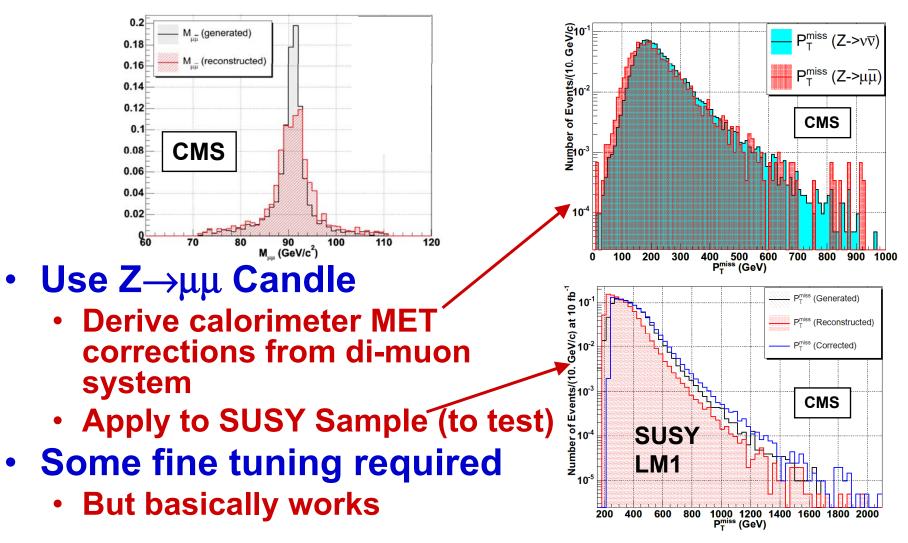
- Raw MET calculation based on sum over calibrated cells or towers
- Clustered (Jets) and Unclustered Energy Calibrations
 - Type-1 (most commonly used)
 - Calibrated Jets + Unclustered Towers
 - Jet Energy Scale
 - Type-2
 - Calibrated Jets + Calibrated Unclustered Towers
 - Include Pile-up and Underlying Event


13 April, 2007 R. Cavanaugh, Florida, LHC Early Phase for the ILC, FNAL

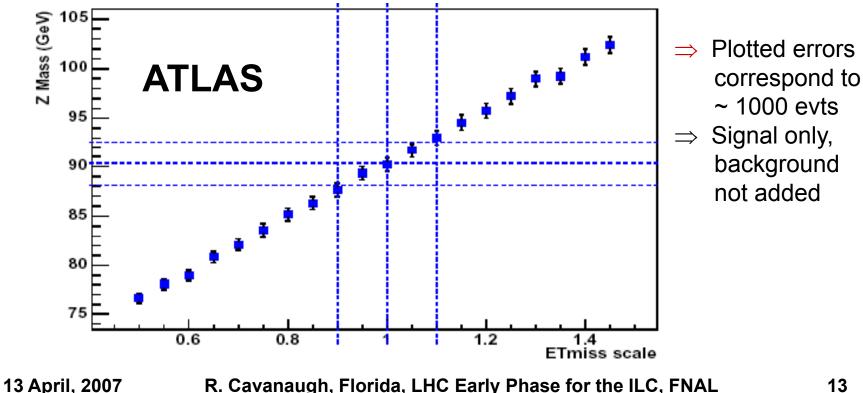
- Resolution
 - Low SumET
 - Noise & Stochastic
 Terms dominate
 - High SumET
 - Constant Term dominates

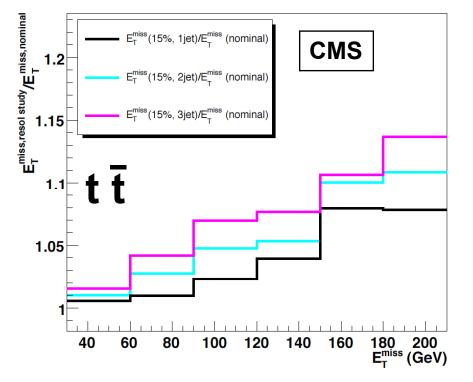
- Performance depends on event content
 - Different resolution for different objects
 - e/γ, charged hadrons, neutral hadrons
 - non-linearity, non-uniformity, etc

Slide adapted from C. Roda

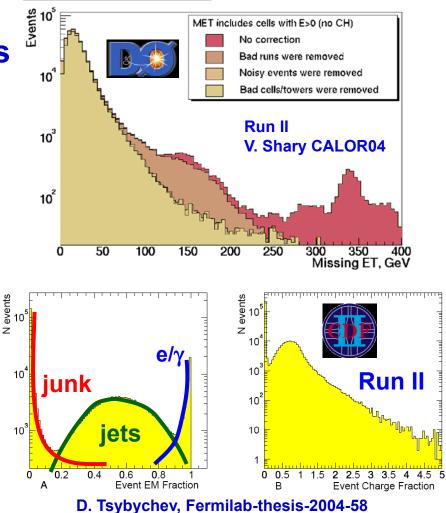

	ATLAS	CMS
Ecal+Hcal pion resolution	$\frac{\sigma}{\mathrm{E}} = \left(\frac{41.9\%}{\sqrt{E}} + 1.8\%\right) \oplus \frac{1.8}{E}$	$\frac{\sigma}{\rm E} = \frac{90\%}{\sqrt{E}} \oplus 7\%$
MET resolution (TDR)	$\sigma(\not\!\!E_{T}) / \Sigma \mathbf{E}_{T} \approx 53\% / \sqrt{\Sigma \mathbf{E}_{T}}$ e/h calibrated	$\sigma(\not\!\!E_T) / \Sigma E_T \approx 120\% / \sqrt{\Sigma E_T} + 2\%$ e/h uncalibrated
Inner tracker resolution (TDR)	σ(p _T)/p _T = 1.8% + 60% p _T (p _T in TeV)	σ(p _T)/p _T = 0.5% + 15% p _T (p _T in TeV)
B field inner region	2 Tesla : p _T swept < 350 MeV	4 Tesla : p _T swept < 700 MeV

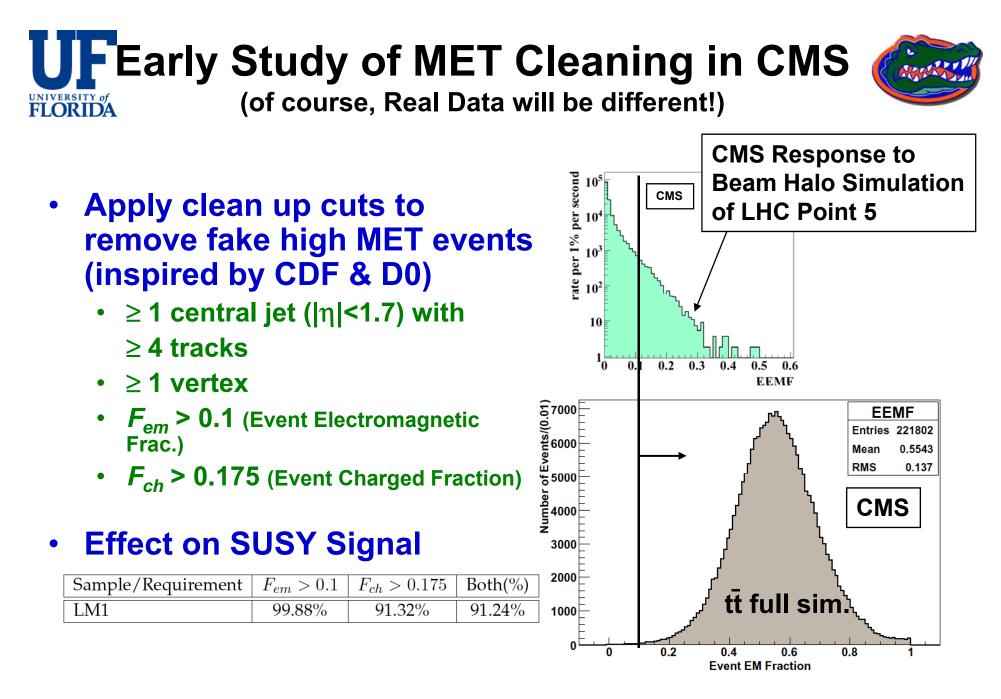
Significant improvement in CMS MET resolution expected by using calibrated calorimeter towers (e/h) and inner detector (tracks)... ...work in progress!


Use Track and Muon System to Calibrate Calorimeter (MET)

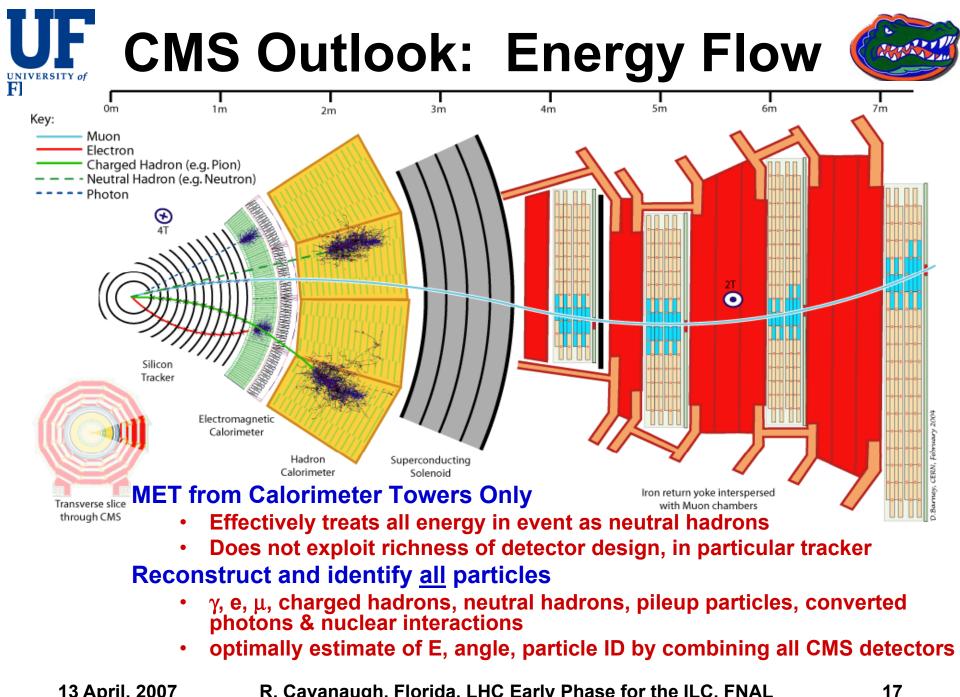

- Z mass from $Z \rightarrow \tau\tau \rightarrow lept-had$ events
- Z mass measured to 3% will result in an error of 10% on Missing ET

- Study effect of non-Gaussian tails in jet E_T resolution contributing to fake MET
 - ~ 15% of all jet are badly under measured
- Exaggerate
 - non-Gaussian Tails
 - Weight each jet (up to 3) in the tails
- Three different scenarios
 - 3 jets under measured
 - 2 jets under measured
 - 1 jet under measured
- Overall Effect :
 - ~ 7% increase in background acceptance for MET > 100 GeV





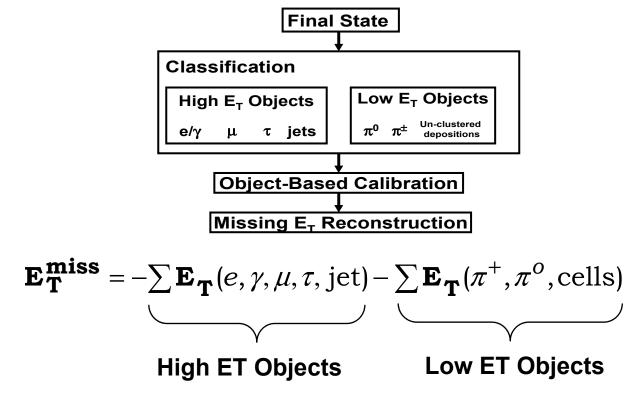
- MET is very powerful discriminator for New Physics
 - Difficult part is to convince yourself that there is a real excess!
- Tevatron teaches us
 - MET is not easily understood!
- Collisional backgrounds
 - Pile-up
 - Underlying Event
- Non-collisional backgrounds
 - Beam halo
 - Cosmic muons
- Detector Effects
 - Instrumental Noise
 - Hot/dead channels (DQM)
 - Inter-module calibration


13 April, 2007

R. Cavanaugh, Florida, LHC Early Phase for the ILC, FNAL

R. Cavanaugh, Florida, LHC Early Phase for the ILC, FNAL

UF CMS Outlook: Energy Flow



- Motiviation: The energy of a typical jet consists roughly of
 - Charged particles : ~60%
 - Mostly charged pions, kaons and protons, but also some electrons and muons
 - Photons : ~25%
 - Mostly from π^{0} 's, but also some genuine photons (brems,...)
 - Long-lived neutral hadrons : ~10%
 - \bar{K}^{0}_{L} , neutrons
 - Short-lived neutral hadrons, "V⁰'s" : ~5%
 - $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}, \Lambda \rightarrow \pi^{-}p, ...,$ but also γ conversions, and (more problematic) nuclear interactions in the detector material.
- Energy resolution determined (ideally) mostly by
 - the 10% neutral hadrons
 - inefficiencies in charged hadron reconstruction
- Attempt to use Full Detector/Event Information in MET reconstruction
 - Determine MET from calibrated, reconstructed particles

$$\mathbf{E}_{\mathbf{T}}^{\mathbf{miss}} = -\sum \mathbf{p}_{\mathbf{T}}(e^{\pm}, \mu^{\pm}, \pi^{\pm}, \gamma, N^o, V^o, etc)$$

- Similar in some ways to CMS Approach
 - but also uses higher level objects (τ, jets, etc)
- Use all reconstructed particles (calibrated)

MET at LHC Summary

- Important signature of new physics!
- Global Object Very challenging to get "right"
 - Hadron Environment
 - New Detectors
 - New Energy Regime
 - Hard work to have MET ready for early LHC Physics!
- CMS and ATLAS
 - Well designed to exploit MET as an object for Physics
 - Simple, Robust Calorimeter Methods
 - Advanced Energy Flow Methods
- Special thanks to:
 - CMS: M. Spiropulu, T. Yetkin, B. Scurlock
 - ATLAS: N. Kanaya, D. Cavalli, C. Roda