SM Higgs Searches in CMS The LHC Early Phase for the ILC FNAL 12-14 April

> Albert De Roeck CERN and University of Antwerp and the IPPP Durham

SM Higgs Search Channels

 $H\to\gamma\gamma$ and $H\to ZZ^\star\to 4\ell$ are the only channels with a very good mass resolution ~1%

$CMS \rightarrow PTDR$: Improvements w.r.t. previous analyses

- Discovery potential for the Higgs boson was updated with:
 - Latest trigger table
 - Background estimates from "data", exp. systematics
 - ME generators for multi-jet events: ALPGEN, MadGraph, CompHEP, TopRex
 - all analyses based on full G4 simulation
 - $L = 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ conditions (pile-up)
- NLO cross sections were used for Higgs boson production and backgrounds (when available)
 - SM Higgs production cross sections and branching ratios: HDECAY, HIGLU, VV2H, V2HV, HQQ.
 - Summary Tables provided by M. Spira.
 - Table with PDF uncertainties on H cross section from A. Djouadi
 - Most of the background NLO cross sections provided by John Campbell via the MCFM package

~ 10^{7-8} Z \rightarrow II, W \rightarrow Iv on tape during physics run in 2008-09 (~ 10fb⁻¹?)

Z, W, tt cross sections and expected number of events after trigger in CMS with 10 fb⁻¹

channel, NLO σ x Br	Level-1 + HLT efficiency	events for10 fb ⁻¹
W->e v, 20.3 nb	0.25	5.1 x 10 ⁷
W->µv, 20.3 nb	0.35	7.1 x 10 ⁷
Z->ee, 1.87 nb	0.53	1.0 x 10 ⁷
Z->μμ, 1.87 nb	0.65	1.2 x 10 ⁷
tt~->µ+X, 187 pb	0.62	1.2 x 10 ⁶

J. Campbell, R.K. Ellis, D. Rainwater hep-ph/0308195

W/Z+nJ+X NLO predictions at LHC with cuts :

 $p_T^{l} > 15 \text{ GeV}$ $|\eta l| < 2.4$ $p_T^{j} > 20 \text{ GeV}$ $|\eta^{j}| < 4.5$ $\Delta R l j > 0.4$ $\Delta R l l > 0.2$

process	σ_{LO}	σ_{NLO}
$e^+\nu_e + X$	5670	6780^{+290}_{-130}
$e^-\bar{\nu}_e + X$	3970	$4830\substack{+210 \\ -90}$
$e^+e^- + X$	803	915 ± 31
$e^+\nu_e j + X$	1660	$1880\substack{+60 \\ -50}$
$e^- \bar{\nu}_e j + X$	1220	1420 ± 40
$e^+e^-j + X$	248	288^{+8}_{-7}
$e^+\nu_e jj + X$	773	669^{+0}_{-18}
$e^- \bar{\nu}_e jj + X$	558	491^{+0}_{-7}
$e^+e^-jj + X$	116	105^{+1}_{-5}

~ 10⁶ tt->µ+X with 10 fb⁻¹ W/Z bb + X

 $|\eta^{b}| < 2.5$

process	σ_{LO}	σ_{NLO}
$e^+\nu_e b\bar{b} + X$	$1.30\substack{+0.21 \\ -0.18}$	$3.06\substack{+0.62\\-0.54}$
$e^-\nu_e b\bar{b} + X$	$0.90\substack{+0.14 \\ -0.12}$	$2.11\substack{+0.46 \\ -0.37}$
$e^+e^-b\bar{b}+X$	$1.80\substack{+0.60\\-0.40}$	$2.28\substack{+0.32\\-0.29}$

Higgs boson search in inclusive production. "Golden" LHC modes:

 $ZZ^{(*)} ->4l$, WW->2l2v, $\gamma\gamma$

Higgs: $H \rightarrow ZZ \rightarrow 4$ leptons

Early discovery in the channel $H \rightarrow WW \rightarrow 2I2v$? ...counting experiment...

- New for this analysis
 - P_T Higgs and WW bkg. at NLO (reweighted in PYTHIA)
 - include box gg->WW bkg.
 - NLO Wt cross section after jet veto
- Background estimates from data (and theory)
 - tt from the data; uncertainty 16% at 5 fb⁻¹
 - WW from the data; uncertainty 17% at 5 fb⁻¹
 - Wt and gg->WW bkg from theor. uncertainties estimated to be 22% and 30%

CMS, 1 fb⁻¹

Discovery reach with $H \rightarrow WW \rightarrow 2I2v$

Excluded cross section times Branching Ratio at 95% C.L.

CMS Phys. TDR 2006

Inclusive $H \rightarrow \gamma \gamma$

CMS plot of the ECAL TDR time : December 1997

Went then from hybrid silicon + gas chamber tracker to all silicon tracker

$H \rightarrow \gamma \gamma$: Tracker material budget

fraction of photons converting before ECAL

	Unconverted	Converted (Invisible)	Converted (Visible)
Barrel (ECAL TDR)	76.2 %	5.0 %	18.8 %
Barrel (present)	58.0 %	10.7 %	31.3 %
EndCap (ECAL TDR)	65.1 %	8.7 %	26.2 %
EndCap (present)	40.5 %	14.4 %	45.1 %

Inclusive $H \rightarrow \gamma \gamma$: Backgrounds and K-factors

	ECAL TDR K factors	current K factors: DIPHOX(NLO) / PYTHIA
born	1	1.50, uncertainty 10-20 %
box	1.85	1.20, uncertainty 10-20 % (Dixon et al)
isolated brem	1	1.72, uncertainty 20-30 %
γ+j, j->π ⁰	not simulated	1.00, uncertainty 30-40 %
j+j, jj->2π ⁰	not simulated	unknown; work in progress 1, uncert ~ 50%

Discovery Potential : $H \rightarrow \gamma \gamma$

Significance for SM Higgs M_H=130 GeV for 30 fb⁻¹

New elements of CMS-PTDR 2006 analysis:

- Cut based analysis
 - Split into categories depending on photon reco quality and position
 - Usage of LLR for discovery, systematic
- Optimized analysis*
 - NN with kinematics and g isolation
 - s/b per event

Final tracker \rightarrow all materials More complete backgrounds

CMS ECAL TDR	CMS PTD)R	ATLAS		
NLO	NLO	NLO	TDR (LO)	New, NLO	New, NLO
count. exp	cut based	optimized*		Cut based	likelihood
~ 7.5	6.0	8.2	3.9	6.3	8.7

S. Dasu, Aspen 07

 \Rightarrow Still the most promising channel for the low mass Higgs

Summary of SM Higgs boson discovery for inclusive production

Full simulation analysis of qqH, $H \rightarrow \tau\tau \rightarrow I+jet$

Discovery in Standard Model

M _H [GeV]	115	125	135	145
Production σ [fb]	4.65×10^{3}	4.30×10^{3}	3.98×10^{3}	3.70×10^{3}
$\sigma \times BR(H \rightarrow \tau \tau \rightarrow lj)$ [fb]	157.3	112.9	82.38	45.37
$ m N_S$ at 30 fb $^{-1}$	10.5	7.8	7.9	3.6
$ m N_B$ at 30 fb $^{-1}$	3.7	2.2	1.8	1.4
Significance at 30 fb ⁻¹ ($\sigma_{\rm B}$ = 7.8%)	3.97	3.67	3.94	2.18
Significance at 60 fb ⁻¹ ($\sigma_{\rm B} = 5.9\%$)	5.67	5.26	5.64	3.19

ttH, H→bb

2)350 9300 2250 8200 250 250 150 ttH 115 ttNi - ttbb - tt7 60 fb⁻¹ CMS # 100 50 00 200 250 300 100 150 35 50 Higgs mass [GeV/c²] SNB+dB² semileptonic, tight M_H=115

Latest CMS results are more pessimistic for this mode due to:

- effects of systematics
- backgrounds with ME Generator (ALPGEN)
- full detector simulation (b tagging, jet resolution)
- new K factors for signal

Improvements (eg. Particle Flow) still possible

SM H $\rightarrow \gamma \gamma$ in associated ttH and WH production at high luminosity

Discovery of tth, h->γγ

Significance of tth, h->γγ for 100 fb⁻¹

Discovery of Wh, h->γγ

Higgs Boson Mass (GeV)	115	120	130	140
Sig. Selection Eff. (%)	10.7	11.2	11.3	11.3
Number Signal NS	7.42 ± 0.33	7.33 ± 0.33	5.96 ± 0.27	4.21 ± 0.19
Total Number Bcgkd	1.61 ± 0.53	2.79 ± 0.62	1.98 ± 0.66	1.10 ± 0.51
Total Number Bcgkd from fit w. syst.	2.23 ± 0.34	$1.94{\pm}0.32$	$1.60 {\pm} 0.22$	1.39 ± 0.22
Signal Significance (ScP)	3.541	3.662	3.257	2.510
Signal Significance (ScP) w. syst.	3.414	3.523	3.184	2.453

Central Exclusive Higgs Production

CMS SM Higgs boson discovery: Signal Significance for 30 fb⁻¹

50 significance with 10 fb⁻¹ over essentially the full range

Mass measurement with $H \rightarrow ZZ \rightarrow 4$ leptons and $H \rightarrow \gamma\gamma$

CP properties from $H \rightarrow ZZ \rightarrow 4$ leptons

d $\Gamma(\eta) \sim H + \eta I + \eta^2 A$, H scalar, A – pseudoscalar, η =tan(ξ), ξ = +/- $\pi/2$ --> A

Summary

- The PTDR simulation studies show:
 - SM inclusive H $\!\!\!\rightarrow\!\!\gamma\gamma$ could be discovered with < 10 fb^{-1}
 - associated with tt and W (tth, Wh): > ~100 fb⁻¹ at high lumi
 - $H \to ZZ \to 4I$ and $H \to WW \to 2I2\nu$: almost no change in the discovery potential compared to previous results
 - + First study of CP mixed Higgs with $H \rightarrow ZZ \rightarrow 4I$
 - tth, $h \rightarrow bb$ is lost as discovery channel
 - qqh, $h \rightarrow tau tau$ "survived" after full simulation !
 - The biggest discovery reach in MSSM M_A -tan(b) plane
 - Higgs boson parameter measurements:
 - Mass: ~ 0.1 % accuracy at 30 fb⁻¹
 - Couplings: ~ 5-20 % with 2x30 fb⁻¹

SM Higgs: 50 significance with 10 fb⁻¹ over essentially the full range

If there are no bad surprises...

BACKUP

CMS Analysis Projects The Physics TDRs

Detector Performance and Software Physics Technical Design Report, Volume I

Physics Performances Physics Technical Design Report Vol II

http://cmsdoc.cern.ch/cms/cpt/tdr/

CERN/LHCC 2006-001

CERN/LHCC 2006-021