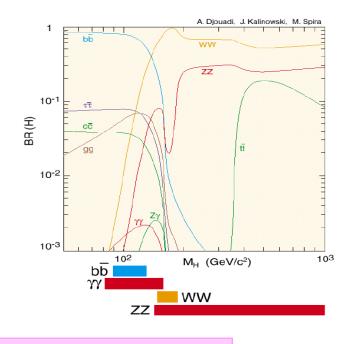

SM Higgs Searches in CMS The LHC Early Phase for the ILC FNAL 12-14 April


Albert De Roeck
CERN
and University of Antwerp
and the IPPP Durham

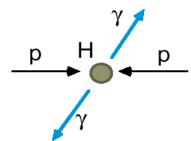
SM Higgs Search Channels

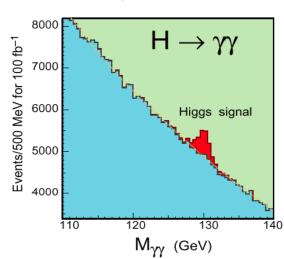
Low mass M_H ≤ 200 GeV

Production	Inclusive	VBF	WH/ZH	ttH
DECAY				
$H \rightarrow \gamma \gamma$	YES	YES	YES	YES
$H \rightarrow bb$			YES	YES
$H \to \tau\tau$		YES		
$H \rightarrow WW^*$	YES	YES	YES	
$H \rightarrow ZZ^*, Z \rightarrow \ell^+\ell^-,$	YES			
<i>ℓ</i> =e,μ				
$H o Z\gamma, Z o \ell^+\ell^-, \ell^=e,\mu$	very low σ			

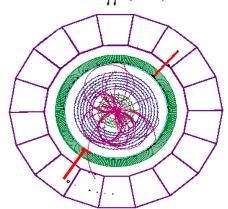
Intermediate mass (200 GeV ≤ M_H ≤700 GeV)

inclusive $H \rightarrow WW$ inclusive $H \rightarrow ZZ$

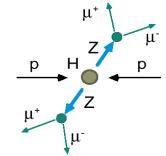

High mass (M_H ≥ 700 GeV)

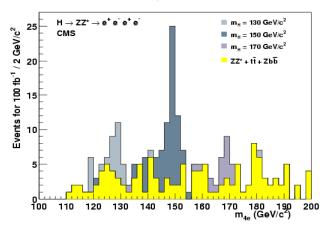

VBF
$$qqH \rightarrow ZZ \rightarrow \ell\ell\nu\nu$$

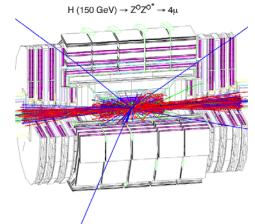
VBF $qqH \rightarrow WW \rightarrow \ell\nu jj$

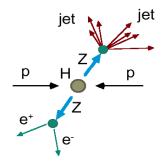

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ are the only channels with a very good mass resolution ~1%

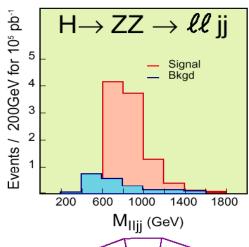
Higgs Searches

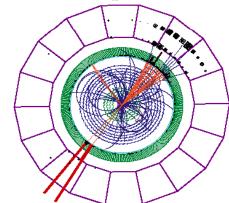

Low $M_H < 140 \text{ GeV/c}^2$






Medium $130 < M_H < 500 GeV/c^2$





High $M_H > \sim 500 \text{ GeV/c}^2$

CMS -> PTDR: Improvements w.r.t. previous analyses

- · Discovery potential for the Higgs boson was updated with:
 - Latest trigger table
 - Background estimates from "data", exp. systematics
 - ME generators for multi-jet events: ALPGEN, MadGraph, CompHEP, TopRex
 - all analyses based on full G4 simulation
 - L = 2×10^{33} cm⁻²s⁻¹ conditions (pile-up)
- NLO cross sections were used for Higgs boson production and backgrounds (when available)
 - SM Higgs production cross sections and branching ratios: HDECAY, HIGLU, VV2H, V2HV, HQQ.
 - · Summary Tables provided by M. Spira.
 - · Table with PDF uncertainties on H cross section from A. Djouadi
 - Most of the background NLO cross sections provided by John Campbell via the MCFM package

~ 10^{7-8} Z \rightarrow II, W \rightarrow Iv on tape during physics run in 2008-09 (~ $10fb^{-1}$?)

Z, W, tt cross sections and expected number of events after trigger in CMS with 10 fb⁻¹

channel, NLO σ x Br	Level-1 + HLT efficiency	events for10 fb ⁻¹
W->e v, 20.3 nb	0.25	5.1×10^7
W->μν, 20.3 nb	0.35	7.1 x 10 ⁷
Z->ee, 1.87 nb	0.53	1.0×10^7
Z->μμ, 1.87 nb	0.65	1.2 x 10 ⁷
tt~->µ+X, 187 pb	0.62	1.2 x 10 ⁶

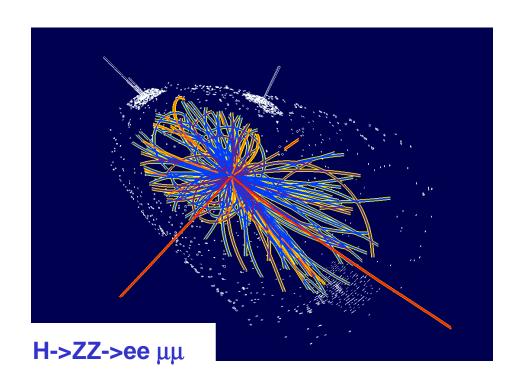
~ 10⁶ tt->µ+X with 10 fb⁻¹

J. Campbell, R.K. Ellis, D. Rainwater hep-ph/0308195

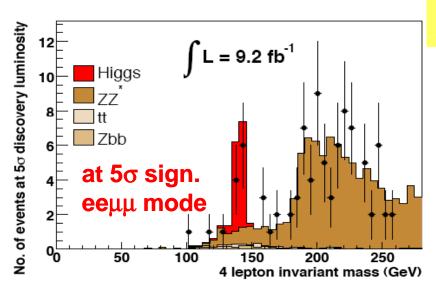
W/Z+nJ+X NLO predictions at LHC with cuts:

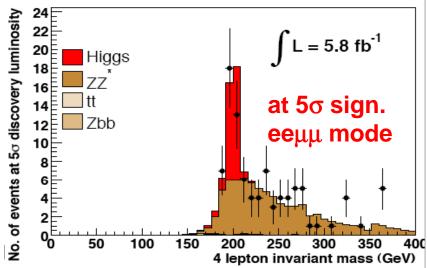
 $p_{T}^{l} > 15 \text{ GeV}$ $|\eta l| < 2.4$ $p_{T}^{j} > 20 \text{ GeV}$ $|\eta^{j}| < 4.5$ $\Delta R l j > 0.4$ $\Delta R l l > 0.2$

process	σ_{LO}	σ_{NLO}
$e^+\nu_e + X$	5670	6780^{+290}_{-130}
$e^-\bar{\nu}_e + X$	3970	4830^{+210}_{-90}
$e^+e^- + X$	803	915 ± 31
$e^+\nu_e j + X$	1660	1880^{+60}_{-50}
$e^-\bar{\nu}_e j + X$	1220	1420 ± 40
e^+e^-j+X	248	288^{+8}_{-7}
$e^+\nu_ejj+X$	773	669^{+0}_{-18}
$e^-\bar{\nu}_ejj+X$	558	491^{+0}_{-7}
e^+e^-jj+X	116	105^{+1}_{-5}

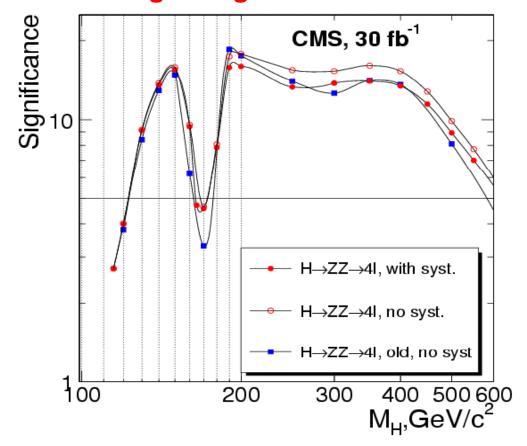

W/Z bb + X

 $|\eta^{b}| < 2.5$


process	σ_{LO}	σ_{NLO}
$e^+ \nu_e b\bar{b} + X$	$1.30^{+0.21}_{-0.18}$	$3.06^{+0.62}_{-0.54}$
$e^- \nu_e b\bar{b} + X$	$0.90^{+0.14}_{-0.12}$	$2.11^{+0.46}_{-0.37}$
$e^+e^-b\bar{b} + X$	$1.80^{+0.60}_{-0.40}$	$2.28^{+0.32}_{-0.29}$


Higgs boson search in inclusive production. "Golden" LHC modes:

 $ZZ^{(*)} -> 4l$, WW->2l2v, $\gamma\gamma$


Higgs: $H \rightarrow ZZ \rightarrow 4$ leptons

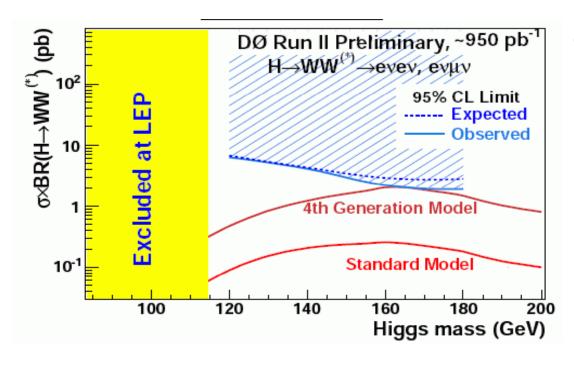
ZZ background: NLO K-factor depends on mass of 41 Background from side bands or from ZZ/Z; (gg->ZZ is added as 20% of LO qq->ZZ)

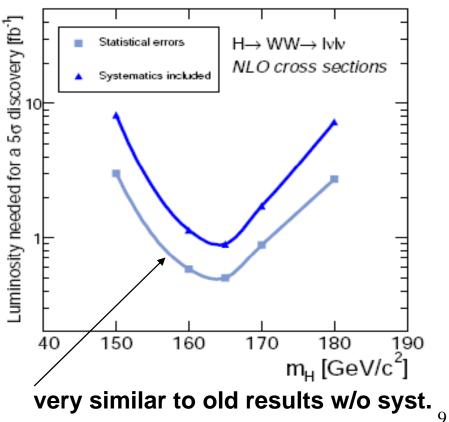
Combined 4μ, 4e, eeμμ signal significance

Early discovery in the channel $H\rightarrow WW\rightarrow 212v$?counting experiment...

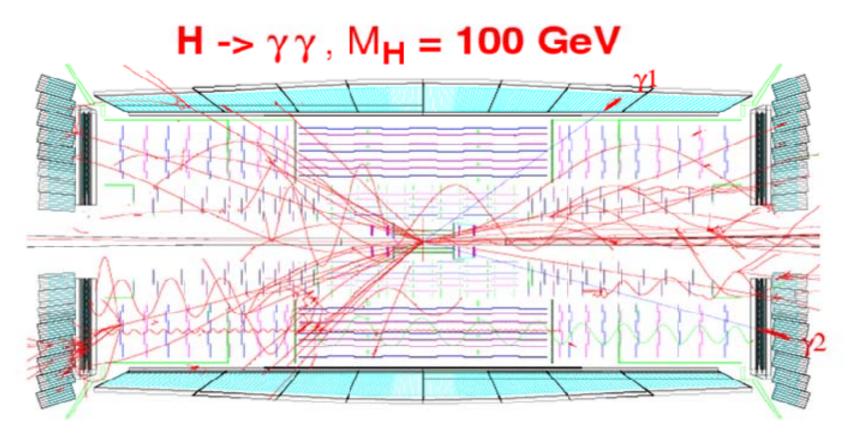
- New for this analysis
 - P_T Higgs and WW bkg. at NLO (reweighted in PYTHIA)
 - include box gg->WW bkg.
 - NLO Wt cross section after jet veto
- Background estimates from data (and theory)
 - tt from the data; uncertainty 16% at 5 fb⁻¹
 - WW from the data; uncertainty 17% at 5 fb⁻¹
 - Wt and gg->WW bkg from theor. uncertainties estimated to be 22% and 30%

CMS, 1 fb-1



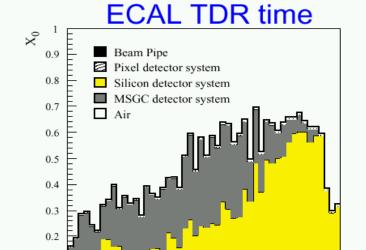

- E_miss > 50 GeV
- jet veto in η < 2.4
- 30 <p_ | max < 55 GeV
- p_T | min > 25 GeV
- 12 < m_{||} < 40 GeV

Discovery reach with H->WW->212v

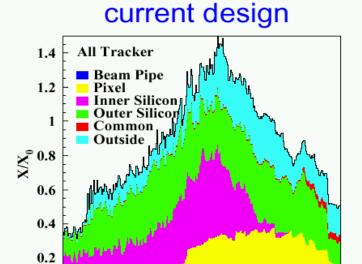

Excluded cross section times Branching Ratio at 95% C.L.

CMS Phys. TDR 2006

Inclusive H→γγ



CMS plot of the ECAL TDR time: December 1997


Went then from hybrid silicon + gas chamber tracker to all silicon tracker

H→γγ: Tracker material budget

tracker material budget

1 1.25 1.5 1.75

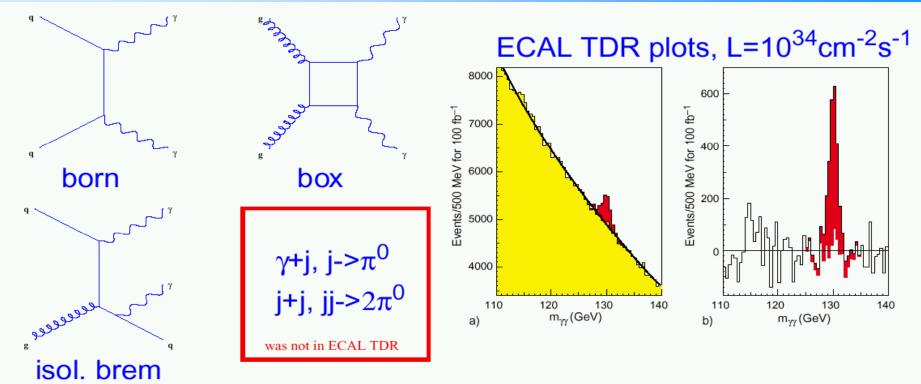
1.5

η

1

0.5

2.5

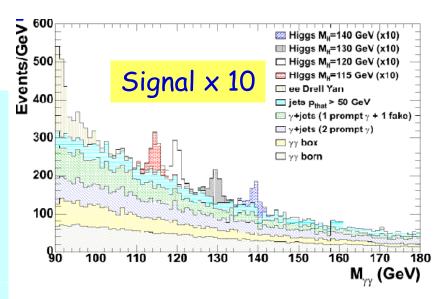

2

fraction of photons converting before ECAL

η

	Unconverted	Converted (Invisible)	Converted (Visible)
Barrel (ECAL TDR)	76.2 %	5.0 %	18.8 %
Barrel (present)	58.0 %	10.7 %	31.3 %
EndCap (ECAL TDR)	65.1 %	8.7 %	26.2 %
EndCap (present)	40.5 %	14.4 %	45.1 %

Inclusive H->>>: Backgrounds and K-factors

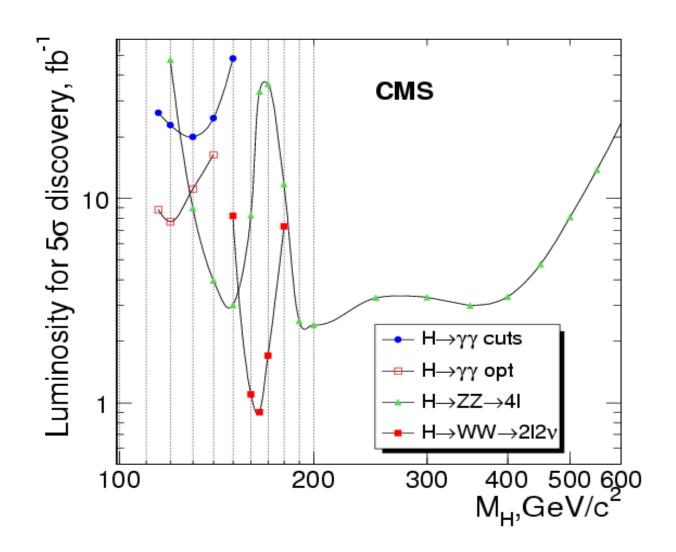

	ECAL TDR K factors	current K factors: DIPHOX(NLO) / PYTHIA
born	1	1.50 , uncertainty 10-20 %
box	1.85	1.20, uncertainty 10-20 % (Dixon et al)
isolated brem	1	1.72, uncertainty 20-30 %
γ+j, j->π ⁰	not simulated	1.00, uncertainty 30-40 %
j+j, jj->2π ⁰	not simulated	unknown; work in progress 1, uncert ~ 50°

Discovery Potential: H→γγ

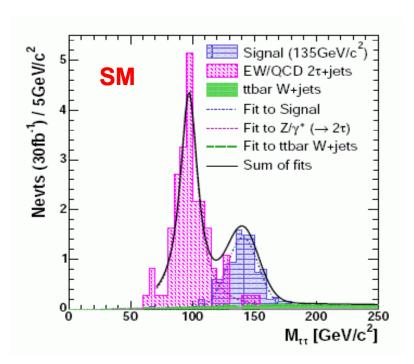
Significance for SM Higgs M_H=130 GeV for 30 fb⁻¹

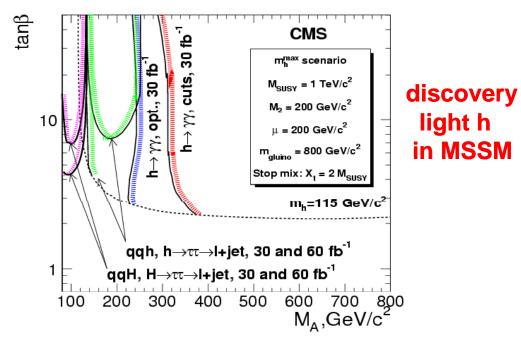
New elements of CMS-PTDR 2006 analysis:

- Cut based analysis
 - Split into categories depending on photon reco quality and position
 - Usage of LLR for discovery, systematic
- Optimized analysis*
 - NN with kinematics and g isolation
 - s/b per event


Final tracker→ all materials More complete backgrounds

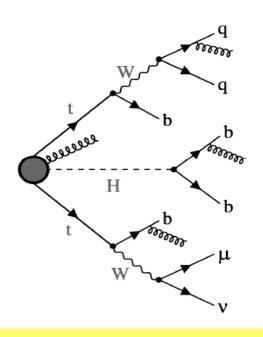
CMS ECAL TDR	CMS PTD	CMS PTDR		ATLAS (preliminary!)	
NLO	NLO	NLO	TDR (LO)	New, NLO	New, NLO
count. exp	cut based	optimized*		Cut based	likelihood
~ 7.5	6.0	8.2	3.9	6.3	8.7

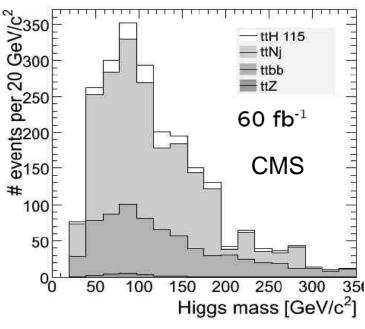

5. Dasu, Aspen 07


⇒Still the most promising channel for the low mass Higgs

Summary of SM Higgs boson discovery for inclusive production

Full simulation analysis of qqH, $H\rightarrow \tau\tau \rightarrow l+jet$

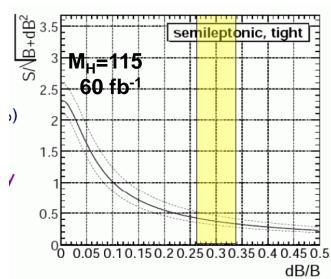




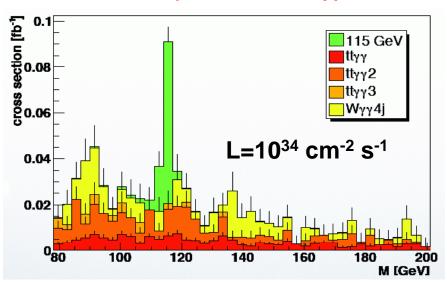
Discovery in Standard Model

$ m M_{ m H}$ [GeV]	115	125	135	145
Production σ [fb]	4.65×10^{3}	4.30×10^{3}	3.98×10^{3}	3.70×10^{3}
$\sigma \times BR(H \rightarrow \tau \tau \rightarrow lj)$ [fb]	157.3	112.9	82.38	45.37
$N_{\rm S}$ at 30 fb $^{-1}$	10.5	7.8	7.9	3.6
$N_{ m B}$ at 30 fb $^{-1}$	3.7	2.2	1.8	1.4
Significance at 30 fb ⁻¹ ($\sigma_{\rm B}$ = 7.8%)	3.97	3.67	3.94	2.18
Significance at 60 fb ⁻¹ ($\sigma_B = 5.9\%$)	5.67	5.26	5.64	3.19

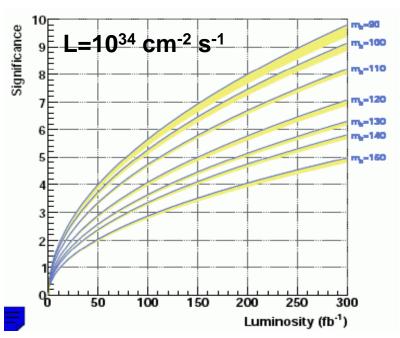
ttH, H→bb



Latest CMS results are more pessimistic for this mode due to:


- effects of systematics
- backgrounds with ME Generator (ALPGEN)
- full detector simulation (b tagging, jet resolution)
- new K factors for signal

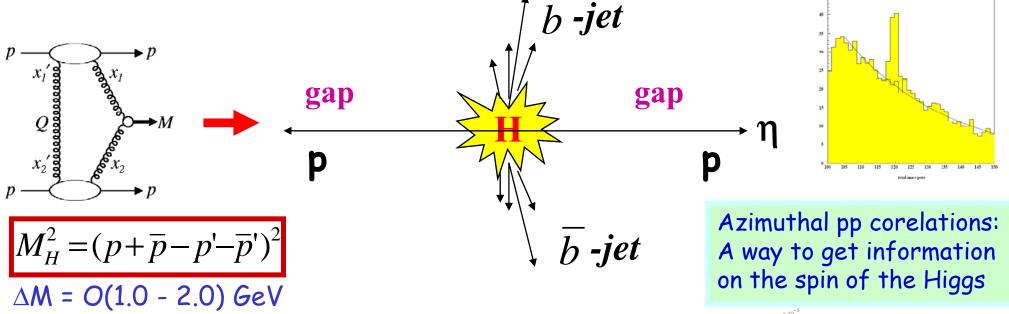
Improvements (eg. Particle Flow) still possible

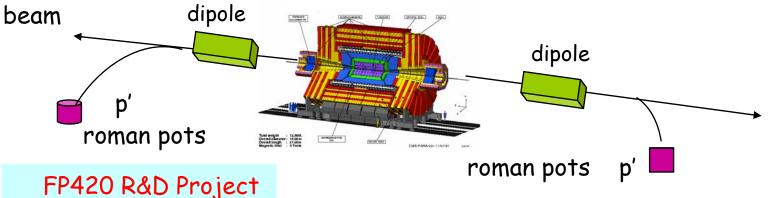

SM $H \rightarrow \gamma \gamma$ in associated ttH and WH production at high luminosity

Discovery of tth, h->γγ

Significance of tth, h->γγ for 100 fb⁻¹

Discovery of Wh, h->γγ

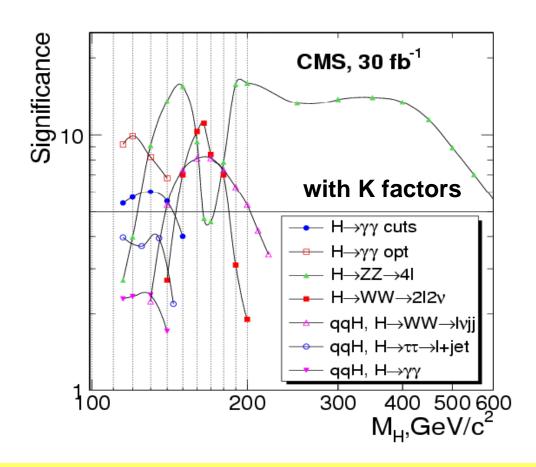



Higgs Boson Mass (GeV)	115	120	130	140
Sig. Selection Eff. (%)	10.7	11.2	11.3	11.3
Number Signal NS	7.42 ± 0.33	7.33 ± 0.33	5.96 ± 0.27	4.21 ± 0.19
Total Number Bcgkd	1.61 ± 0.53	2.79 ± 0.62	1.98 ± 0.66	1.10 ± 0.51
Total Number Bcgkd from fit w. syst.	2.23 ± 0.34	1.94 ± 0.32	1.60 ± 0.22	1.39 ± 0.22
Signal Significance (ScP)	3.541	3.662	3.257	2.510
Signal Significance (ScP) w. syst.	3.414	3.523	3.184	2.453

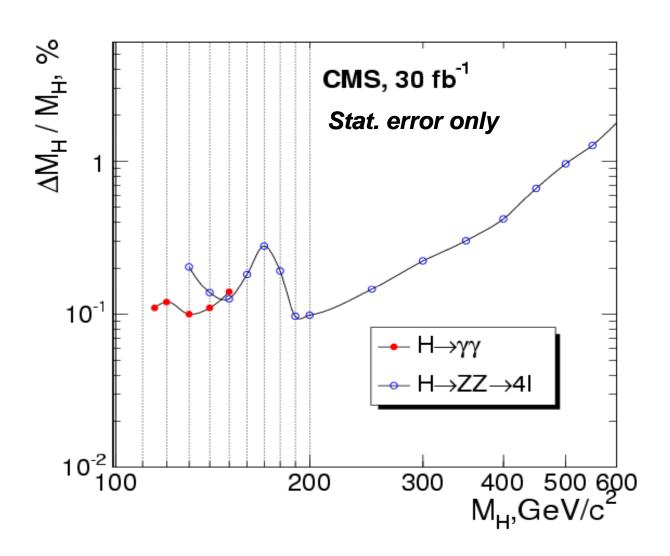
Central Exclusive Higgs Production

Exclusive central Higgs production pp \rightarrow p H p : 3-10 fb SM

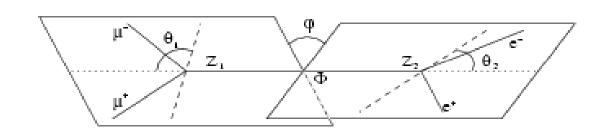
>100 fb MSSM (high $tan\beta$)

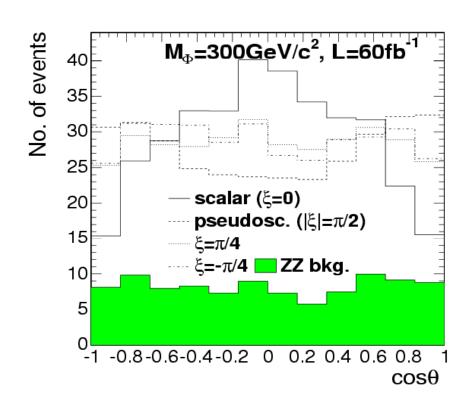


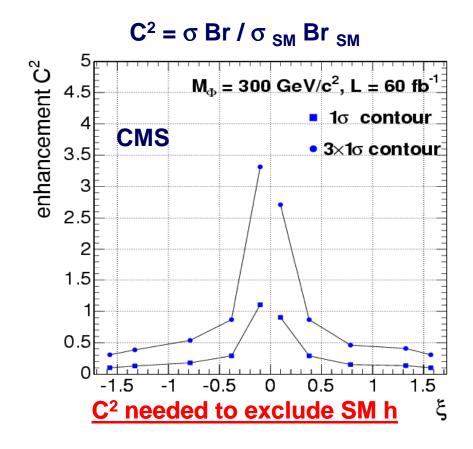
 $\begin{array}{c} x_10^{-3} \\ 0.1 \\ 0.09 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.05 \\ 0.001 \\ 0.002 \\ 0.011 \\ 0.002 \\ 0.012 \\ 0.003 \\ 0.002 \\ 0.013 \\ 0.002 \\ 0.014 \\ 0.003 \\ 0.003 \\ 0.004 \\ 0.005 \\ 0.$


http://www.fp420.com

CMS SM Higgs boson discovery: Signal Significance for 30 fb⁻¹


 5σ significance with $10~fb^{-1}$ over essentially the full range

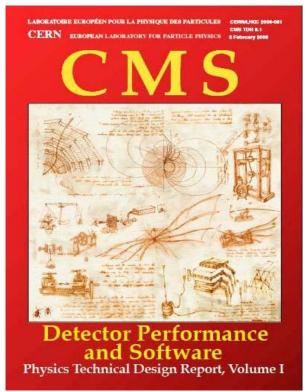

Mass measurement with $H\rightarrow ZZ\rightarrow 4$ leptons and $H\rightarrow \gamma\gamma$

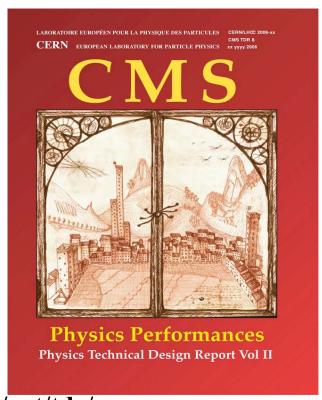


CP properties from $H\rightarrow ZZ\rightarrow 4$ leptons

 $d \Gamma(\eta) \sim H + \eta I + \eta^2 A$, H scalar, A - pseudoscalar, $\eta = \tan(\xi), \ \xi = +/-\pi/2 --> A$

Summary


- The PTDR simulation studies show:
 - SM inclusive $H\rightarrow\gamma\gamma$ could be discovered with < 10fb⁻¹
 - associated with tt and W (tth, Wh): > ~100 fb⁻¹ at high lumi
 - H \to ZZ \to 4l and H \to WW \to 2l2v : almost no change in the discovery potential compared to previous results
 - First study of CP mixed Higgs with $H \rightarrow ZZ \rightarrow 4I$
 - tth, h→bb is lost as discovery channel
 - qqh, h→tau tau "survived" after full simulation!
 - · The biggest discovery reach in MSSM MA-tan(b) plane
 - Higgs boson parameter measurements:
 - Mass: ~ 0.1 % accuracy at 30 fb⁻¹
 - Couplings: ~ 5-20 % with 2x30 fb⁻¹


SM Higgs: 5 σ significance with 10 fb⁻¹ over essentially the full range

If there are no bad surprises...

BACKUP

CMS Analysis Projects The Physics TDRs

http://cmsdoc.cern.ch/cms/cpt/tdr/

CERN/LHCC 2006-001

CERN/LHCC 2006-021