Higgs to AA Decays at the LHC

Guiyu Huang

University of Wisconsin - Madison

Early Phase of LHC for ILC

in collaboration with Marcela Carena, Tao Han and Carlos Wagner

= NOOG

LEP Results

m_{Higgs} Lower Limit

- Standard Model: 114 GeV
- MSSM: 114 GeV, 90 GeV
- . . .

Most searches focus on 'Standard Channels'

channel blind search (recoil mass method):

- 82 GeV with full SM coupling
- 20 GeV with 1/10 SM coupling

= NOOG

No Light Higgs Bosons

LHC/ILC 3 / 15

< 🗇 >

Maybe Light Higgs Bosons

Allows existence of relatively light Higgs (80 - 150 GeV) to decay to even lighter Higgs pairs.

Lightest Higgs (A) dominantly decays into $b\bar{b}$, $\tau\bar{\tau}$, light jets, $\gamma\gamma$...

Search channels studied: $bb\bar{b}\bar{b}, b\bar{b}\tau\bar{\tau}, \tau\tau\bar{\tau}\bar{\tau}, \tau\bar{\tau}jj, 4\gamma \dots$

Most studies make use of the leading Higgs production mechanisms: gluon fusion and weak boson fusion.

Higgs Production

▲□ ► < = ► </p>

W/Z associated Higgs production

Decay Chain

- Signal compromised by smaller σ and W, Z leptonic BR.
- Background suppressed by 2 or more orders of magnitude.

G. Huang (Wisconsin)

Factorization of the Cross Section

$$\begin{split} \sigma &= \sigma(Wh) \ \mathcal{B}(W) \ \kappa_{hWW}^2 \mathcal{B}(h \to aa) \mathcal{B}(a \to b\bar{b}) \mathcal{B}(a \to \tau\bar{\tau}) \cdot 2 \\ \sigma &= \sigma(Wh) \ \mathcal{B}(W) \ \kappa_{hWW}^2 \mathcal{B}(h \to aa) \mathcal{B}(a \to b\bar{b})^2 \end{split}$$

$$\begin{array}{lcl} C_{bb\tau\tau}^2 &\equiv& \kappa_{hWW}^2 \mathcal{B}(h \to aa) \mathcal{B}(a \to b\bar{b}) \mathcal{B}(a \to \tau\bar{\tau}) \cdot 2 \\ C_{bbbb}^2 &\equiv& \kappa_{hWW}^2 \mathcal{B}(h \to aa) \mathcal{B}(a \to b\bar{b})^2 \end{array}$$

G. Huang (Wisconsin)

< ∃ > √ Q (~ LHC/ILC 9/15

< 67 >

		representative	considered
	parameters	value	range
masses	m_h	120	90-130
	m_a	30	20-60
coupling	κ_{hVV}	0.7	0.5-1.0
branching	$\mathcal{B}(h \to aa)$	0.85	0.8-1.0
fractions	$\mathcal{B}(a \to b\bar{b})$	0.92	0.95-0.70
	$\mathcal{B}(a \to \tau \bar{\tau})$	0.08	0.05 - 0.30
$2b2\tau$ channel	$C_{2b2\tau}^2$	0.061	0.019-0.42
4b channel	$C_{4b}^{\overline{2}}$	0.35	0.13-0.90

Cuts, Tagging

b-tagging:	50%	for $E_T > 20$ GeV, $ \eta < 1.0$
au-tagging:	40%	for $E_{vis} > 20$ GeV, $ \eta < 1.5$
$jet \ rejection:$	50 - 200	

$\begin{array}{rcl} \Delta R &> & 0.4 \\ m_{inv} &> & 20 \; {\rm GeV} \end{array}$

Signal (assuming $C_{2b2\tau}^2 = 0.06, C_{4b}^2 = 0.35$)

G. Huang (Wisconsin)

 $h \rightarrow aa @LHC$

LHC/ILC 12 / 15

Signal vs. Background

Signal vs. Background

G. Huang (Wisconsin)

LHC/ILC 14 / 15

Signal Significance

Window Cuts

m(4b): 100 - 140 GeV m(2b): 20 - 40 GeV

Statistics

$C_{4b}^2 = 0.35$	σ (fb)	S/B	$S/\sqrt{S+B}$		
10			10 fb^{-1}	100 fb $^{-1}$	
m(4b)	4.5	0.35	3	9	
m(2b)	4.5	0.32	3	9	

With $\int Ldt = 10$ fb⁻¹, can achieve 5σ discovery for $C_{4b}^2 \gtrsim 0.5$ With $\int Ldt = 300$ fb⁻¹, can achieve 5σ discovery for $C_{4b}^2 \gtrsim 0.09$