

Working Group 4

BSM: Missing energy and such

Conveners: Jose Santiago James Wells Graham Wilson Filip Moortgat

Experimental session:

Aspects of measuring missing transverse energy at the LHC (R.Cavanaugh) Aspects of measuring missing transverse energy at the ILC (G. Wilson)

Theory session:

Nearly degenerate gauginos at the LHC and ILC (K. Wang) Can the ILC break the remaining MSSM degeneracies from the LHC? (B. Lillie) T-parity in Little Higgs models (R. Hill) Some complications in analyzing MET (S. Chang)

Experimental aspects of MET

- "Small" Missing Energy
 - Standard Model Physics
- Experimental Challenge
 - Understanding QCD and other environmental bkgs.
 - good low-energy resolution

- "Large" Missing Energy
 - New Physics
- Experimental Challenge
 - Understanding Tails!

Rick Cavanaugh

Environmental challenges

ETH Institute for Particle Physics

- MET is very powerful discriminator for New Physics
 - Difficult part is to convince yourself that there is a real excess!
- Tevatron teaches us
 - MET is not easily understood!
- Collisional backgrounds
 - Pile-up
 - Underlying Event
- Non-collisional backgrounds
 - Beam halo
 - Cosmic muons
- Detector Effects
 - Instrumental Noise
 - Hot/dead channels (DQM)
 - Inter-module calibration

D. Tsybychev, Fermilab-thesis-2004-58

Improving MET using Energy flow:

- Motivation: The energy of a typical jet consists roughly of
 - Charged particles : ~60%
 - Mostly charged pions, kaons and protons, but also some electrons and muons
 - Photons : $\sim 25\%$
 - Mostly from π^0 's, but also some genuine photons (brems,...)
 - Long-lived neutral hadrons : ~10%
 - K^0_L , neutrons
 - Short-lived neutral hadrons, "V⁰'s" : ~5%
 - $K_{S}^{0} \rightarrow \pi^{+}\pi^{-}, \Lambda \rightarrow \pi^{-}p, ...$, but also γ conversions, and (more problematic) nuclear interactions in the detector material.
- Energy resolution determined (ideally) mostly by
 - the 10% neutral hadrons
 - inefficiencies in charged hadron reconstruction
- Attempt to use Full Detector/Event Information in MET reconstruction
 - Determine MET from calibrated, reconstructed particles

$$\mathbf{E}_{\mathbf{T}}^{\mathbf{miss}} = -\sum \mathbf{p}_{\mathbf{T}}(e^{\pm}, \mu^{\pm}, \pi^{\pm}, \gamma, N^{o}, V^{o}, etc)$$

Sources of fake missing energy:

ILC: Large cross-sections for Bhabha and two-photon processes. Use characteristic electron signatures to reject.

Genuine missing E_T predominates above WW threshold.

ILC detector requirements

ETH Institute for Particle Physics

Requirements for an ILC detector:

- Hermetic coverage to low angle especially for electrons and photons.
- Robust and accurate measurement of the visible particles.
- Missing E_T resolution in the hadron collider sense is close to irrelevant.

Red: eeµµ background

1fb/bin signal : smuons (M=90 GeV)

Nearly Degenerated Gauginos

$$\Delta = m_{\chi_1^{\pm}} - m_{\chi_1^{0}}; \qquad (m_{\chi_2^{0}}, (m_{\chi_3^{0}}) \sim m_{\chi_1^{\pm}})$$

Already studied: Wino LSP in AMSB Feng, Moroi, Randall, Strassler and Su,1999 $M_2 < M_1, \ \Delta \sim m_\pi$ $\Gamma_{\chi_1^\pm} \sim 10^{-22} \ {\rm GeV}$

signature: Charge track

Cases Studied: well-tempered neutralino Arkani-Hamed, Delgado, Giudice, 2006

- Bino-Wino LSP $M_1 \simeq M_2, \ \Delta \sim \mathcal{O}({
 m GeV})$
- Bino-Higgsino LSP $M_1 \simeq \mu$, $\Delta \sim \mathcal{O}(\text{GeV})$

$$\Gamma_{\chi_1^\pm} \sim 10^{-9}~{\rm GeV}$$

Filip Moortgat, ETH Zurich

Kai Wang

$\underset{100 \mathrm{fb}^{-1}}{\mathsf{Results}}$

Processes (fb)	Basic Cuts	η cut	ε	MJJ cut	e	p_T^J cut	ε	p_T^ℓ
$\chi_{1}^{+}\chi_{1}^{-}$ jj	14.04	6.21	44%	4.67	75%	4.15	89%	1.017
$\chi_{1}^{\pm}\chi_{2}^{0}jj$	25.98	6.86	26%	5.41	79%	3.97	73%	2.034
$\chi_{1}^{\pm}\chi_{1}^{\pm}$ <i>jj</i>	15.01	5.66	38%	4.69	83%	3.66	78%	1.764
$\chi_{1}^{\pm}\chi_{1}^{0}$	2.63	1.05	40%	0.80	76%	0.59	74%	
Total	57.66	19.78		15.57		12.37		4.82
$P_{ m surv}\sigma$	47.28	16.22		12.76		10.14		3.95
Zjj (EW)	1404	170	12 %	117.8	69%	87.1	74%	
$P_{ m surv}\sigma$	1151.3	139.4		96.6		71.4		
Zjj (QCD)	124.5 pb	3130	2.5%	967.9	31%	519.8	54%	
$P_{ m surv}\sigma$	34.8 pb	876.4		271		145.5		
<i>Zjj</i> Total	159.3 pb	1015.8		367.6		216.9		216.9
Wjj (EW)	199.3	37.9	19%	26.6	70 %	19.6	74%	9.12
$P_{ m surv}\sigma$	163.4	31.0		21.8		16.1		7.48
Wjj (QCD)	21.4 pb	631.2	2.9%	228.0	36%	121.2	53%	87.63
$P_{ m surv}\sigma$	5.99 pb	176.7		63.8		33.9		24.54
<i>Wjj</i> Total	6.15 pb	207.7		85.6		50.0		32.0
Total BG	165.5pb	1192.5		453.2		266.9		248.9
S/B	0.028%	1.36%		2.8 %		3.8%		1.6 %
S/\sqrt{B}				6σ		6.2σ		2.5σ

Table: Summary Table for Invisible Channels, all numbers are in fb unless noted explicitly, η , M_{JJ} and p_T^J cuts

LHC inverse problem

ETH Institute for Particle Physics

LHC Inverse problem

Arkani-Hamed, Kane, Thaler, Wang hep-ph/0512190

- How to map from observables to a Lagrangian?
- What is the nature of the inverse mapping?
- Each parameter can be well measured, but many islands can be degenerate!

Ben Lillie

Simulated ~40k points in parameter space

Found ~300 degeneracies

Expect ~30 model points consistent with any "generic" set of data

LHC4ILC workshop, April 14, 2007

Model Counting at the ILC

- 500 GeV:
 - 20 models with selectrons & smuons.
 - 28 models with staus, 7 of which also have selectrons/smuons
 - 53 models with charginos, 2 of which also have selectrons/ smuons,
 - 8 of which also have staus
 - 99 models with only LSP (lightest neutralino)
 - 36 models with no kinematically accessible sparticles

• I TeV:

- 116 models with selectrons & smuons
- 125 models with staus, 55 of which also have selectrons/smuons
- 25 models with first chargino, 16 models with second chargino; 12 of which
- also have selectrons/smuons, 15 of which also have staus
- I model with only LSP (lightest neutralino)
- I model with no kinematically accessible sparticles

242 Models 165 Pairs **Preliminary results**

LHC4ILC workshop, April 14, 2007

Filip Moortgat, ETH Zurich

ETH Institute for Particle Physics **T-parity in Little Higgs models**

ETH Institute for Particle Physics

given a parity: we can define it, but is it respected by the dynamics ?

T parity from an internal symmetry

[V,V]~V, [V,A]~A, [A,A]~V

• as in QCD, topological interaction breaks this internal parity

T parity from "identical" sectors

$$\delta \left[\Gamma'(\Phi_1) \pm \Gamma'(\Phi_2) \right] \sim \int \epsilon (dA)^2 \pm \epsilon (dA)^2$$

• if sectors are really identical, then they give identical (not cancelling) anomalies

In both cases, the decays of "lightest T odd particle" must proceed through the topological interaction ⇒ distinct signatures ! LHC4ILC workshop, April 14, 2007 Filip Moortgat, ETH Zurich

- is electroweak symmetry broken by fermion condensation ? weakly coupled composite higgs an important case to investigate
 - can look a lot like a SM higgs
- even without mention of fermions, need to worry about anomalies in a little higgs model
- T parity generally violated
 - hard to find dark matter candidate or missing energy signal in gauge/higgs sector of composite models
- topological interactions offer exciting probe of UV completion

Spencer Chang

- Within a BTSM model
 - Discovery of new states (e.g. Superpartners)
- Is missing particle a WIMP?
 - Enough information to predict relic abundance?
- Cosmologically, LHC lacking... ILC combination ideal (Matchev et.al., Baltz et.al.)

LHC4ILC workshop, April 14, 2007

Filip Moortgat, ETH Zurich

Model Under Investigation

For motivation, see Carlos, Tim, Jack's talks in this workshop

Nonstandard decays should be into neutral states, neutralinos?

Invisible $2\chi_0$ decay strongly constrained

- Dominant singlino LSP implies longer cascades
- Longer cascades mean more visible energy (jets, leptons) and reduced missing energy
- Tevatron searches normally expect:
 - Squark \rightarrow jet + MET
 - Gluino \rightarrow 2jets + MET
- Effects degrade search esp. with optimized MET cuts

Filip Moortgat, ETH Zurich

- Other new LSPs: e.g. RH sneutrino
- Highly displaced vertices from weak R-parity violation
 - UDD leading to $h \rightarrow 2\chi_1 \rightarrow 6$ (displaced?) jets
 - Hidden Valley Models (Strassler et.al.)
- R-parity violation into neutrinos: Fake Dark Matter
- Analysis issues suggest a need for a global analysis that is adaptable and not wedded to a model (MARMOSET?)
- Cautious analysis is best i.e. Avoid model priors until necessary

LHC4ILC workshop, April 14, 2007

Question to answer:

What can the LHC learn us in preparing for the ILC? (with 10 fb⁻¹ud)

"fb-1ud" = inverse femtobarn of understood data

• Given that LHC = coloured particles ILC = electroweak particles

• How much can we deduce in a model independent way?

• What can we learn apart from ILC energy scale -are there other things that one would like to know? (detector design?)

LHC 4 ILC ?

LHC : gluon factory

colored states: squarks, gluinos, etc.

+ R-parity

?

ILC : electron factory

charginos, neutralinos, sleptons, etc.

Not at all trivial. New ideas needed!

LHC4ILC workshop, April 14, 2007

Is the LHC going to reliable tell us something about this?

Questions 2

ETH Institute for Particle Physics

• Suppose:

G. Wilson

- -A light Higgs is found. Consistent with SM, SUSY.
- -Only a jets+MET signal is found at LHC.
- What is the minimum $\sqrt{\text{shat}}$ involved in the signal ?
 - -Can we estimate the e⁺e⁻ production threshold reliably ?
- Can the signal be produced in e^+e^- (does it couple to the γ , W, Z, h) ?
 - -Presumably no info will be available.
 - –If it's a gluino, e^+e^- is probably irrelevant for direct tests ...
- Is there ANY robust logical inference on the masses of lighter particles that can be made, e.g. M_{LSP} ??
 - We may find that LHC can't tell very much of value in diagnosing this new physics. And that ILC at any energy may not be a useful diagnostic tool for certain hadron collider signatures.

I have seen people interested in:

 extrapolating ILC relevant information from CMS TDR / ATLAS notes (latter still ongoing)

e.g. qqH, H to invisible

• studying techniques for global, model independent analysis of the first data to deduce the underlying model

• ...

If you want to contribute: please contact the conveners!

Prediction is very hard, especially about the future

Yogi Berra

LHC4ILC workshop, April 14, 2007