Polarimetry at ILC

Daniela Käfer daniela.kaefer@desy.de

Beam Delivery Meeting, SLAC January 30, 2007

Basics of Polarimetry

- Why do we want polarised beams?
- Principle and aim of the measurement
- Polarimeter requirements
- Possible location(s)?
- 2 Assembly of a test bench
 - Concept, setup and photos
 - Planned measurements
- 3 Detector MC simulations...
 - Perfect detector
 - Linearity \leftrightarrow Non-linearity

4 Summary

Basics of Polarimetery

Overview

Basics of Polarimetry

Assembly of a test ber

Detector MC simulations. . .

Summary

Why do we want polarised beams?

The spin orientation of the colliding e^-/e^+ determines the frequency of the different physical processes. \longleftrightarrow Tuning of the beam polarisation!

- Background events are suppressed while
- the rate of signal events is augmented.

This is important for searches for new phenomena (DM, SUSY, EDM ...)

BUT:

The polarisation level must be known precisely \leftrightarrow Measurement! (a few per mill only)

Compton scattering of laser photons:

- scatter circularly polarised laser light off e^-/e^+ bunches
- about $10^3 e^-/e^+$ are scattered per beam crossing
- deflect the scattered e^-/e^+ via dipole magnets ("magnetic chikane")
- measure the energy distribution of the e^-/e^+ (prob. also γ 's)

Scheme of the Compton-IP and of the deflecting dipole magnets.

Overview Basics of Polarimetry Assembly of a test bench Detector MC simulations... Summary

Principle of measurement II

.....

Measurement of the energy distribution via Cherenkov detectors

- incident e^-/e^+ generate Cherenkov radiation
- detection of the Cherenkov photons with photo detectors
- count the photo electrons per channel → linearity important! (Size and shape of possible non-linearities need to be measured very precisely and correctd for.)

What should be achieved?

A measurement as precise as possible of the asymmetry generated by laser light of different helicity states. \rightarrow Level of Polarisation!

Quantum efficiency, sensitive area, light extraction, sensitive range of wavelengths (dynamic range) ... have to be optimized.

Daniela Käfer · · · Beam Delivery Meeting · · · 01/30/07 Polarimetrie at the ILC

Type of measurement / Precision:

- Measurement of the longitudinal beam pol. \rightarrow energy measurement!
- required precision: $\frac{\delta p}{p} \le 2.5\%$ 2 times better than the existing SLD polarimeter
- but: time of measurement only \approx 1s due to high interaction rate, ca. $\mathcal{O}(10^3)$ scattered e^-/e^+ per beam crossing (time of meas. of the SLD pol. \approx 3 min.)
- (Additional measurement of the scattered photons?)

Possible locations - open questions:

- upstream / downstream of the e^-/e^+ IP ?
- only for the e^- beam, for the e^+ beam, or for both beams ?
- Spin transport is difficult to calculate! ↔ Measurement better... but: measurement not directly at the e⁻/e⁺ IP possible, thus: still calculations & simulations necessary!

Assembly of a Test Bench

Overview

Basics of Polarimetr

Assembly of a test bench

Detector MC simulations. . .

Summary

Development of a test bench

Analysis of many different components are planned

- ▷ Comparison with SiPM + Quartz fibers
- Investigation of temperature effects
- later: Assembly of Cherenkov counters, etc.
- ... and some time in the future: a first proto type.

concept: modular setup

- Steering: high voltage, number of channels, etc.
- Slow Control: temperature, low voltage, etc.
- Data acquisition...

Initially: pursue two tracks:

- LABVIEW:
 - Easy to create user interfaces
 - Linking with ROOT (analysis) more complicated
- C/C++ and Java(?):
 - ▷ also easy to program (use of libraries)
 - Linking with ROOT much easier
 - Java for the creation of user interfaces?

Overview Basics of Polarimetry	Assembly of a test bench	Detector N	1C simulations	Summary	
Software status		000	X ADC-Program	m	
		<u>F</u> ile <u>T</u> est <u>H</u> elp			
		CCUSB		u al	
up to now:		Senai 45 🛨		1=0	
■ Communication Soft- ←	+ Hardware	ADC			
	N = 10 🖨 A = 1 🖨 Selftest				
IS WORKING: LABVIEW & C/C++		Dogistor		•	
Crate Controller & ADC	s tested	N = 17 🖨 A =	1 특		
			<u> </u>		
Data Acquisition		Messung			
		Loops 5000 🔁	Start Stop		
		· · · · · · · · · · · · · · · · · · ·			
Next stops:					
Next steps.					
Development of simple user interfaces					
 Decision for one programming language 					
LABVIEW or $C/C++$ and Java					
• Development of further (more condicticated) user interfaces					
• Development of further (more sophisticated) user interfaces					
for steering, control and data acquisition via PC					
Drawl Exit					
Deniala Käfen Deam Delimener Mesting	01/20/07 Dala	uinestuis et the II		10 / 22	

Assembly of a test bench

Detector MC simulations. . .

Test bench - photos I

Separation into "two sites":

- Software/DAQ (new devel.)
- Hardware (old DAQ-system)

Status: Dezember 2006

Polarimetrie at the ILC

Overview

Basics of Polarimetr

Assembly of a test bench

Detector MC simulations. . .

Summary

Test bench - photos II

another photo session... Dezember 2006

Daniela Käfer · · · Beam Delivery Meeting · · · 01/30/07

Polarimetrie at the ILC

Linearity of the ADC for different input voltages [mV]

Aside: PMs – SiPMs

Overview

Basics of Polarimetr

Assembly of a test bench

Detector MC simulations. . .

Summary

Photo detectors in general

- conventional PMs
- APDs (Avalanche Photo Diods)
- HPDs (Hybrid Photo Diods)
- SiPMs (Silicon PMs)

... some properties:

		PM	APD	SiPM
Quantum	blue	20 %	50 %	12 %
efficiency	green	a few %	60-70 %	15 %
	red	< 1 $%$	80 %	15 %
Amplificatio	on (Gain)	$10^{6} - 10^{7}$	100-200	10 ⁶
Threshold ($S/N \gg 1$)	1 photo- <i>e</i> ⁻	$pprox$ 10 photo- e^-	1 photo- <i>e</i> ⁻
dynamic rar	nge	$pprox 10^{6}$	large	$pprox 10^3/\textit{mm}^2$

APD/SiPM: low operating voltage (100 V/10 V), insensitive to magnetic fields

Short overview of SiPMs:

- new photo detectors based on semi-conductor technology
- Avalanche Photodiode with many pixels, operated in Geiger mode
- about $10^3~\text{pixel}/mm^2$, $_{R_{\text{pixel}}\,\approx\,400~\text{k}\Omega_{\text{, }}C_{\text{Pixel}}\,\approx\,50~\text{fF}}\,\rightarrow\,\text{Gain}\,\approx\,10^6$
- industrial mass production (Hamamatsu): $\sim \mathcal{O}(1 \text{ Euro})$ low priced!
- usage within the ILC calorimeter: intensive analyses before choosing the scintillating fibers

But: new SiPMs need detailed testing:

- dynamic range, spectra
- stability, linearity, etc.
- temperature effects
- (behaviour in magnetic fields)

Soon available:

Basics of Polarimetry

- New developments of SiPMs (by Hamamatsu)
- larger sensitive area (up to 5 cm²)
- much better sensitivity for blue and near UV light!

Assembly of a test bench

Detector MC Simulations

Start: on the detector surface! \Downarrow

simulation of:

- Compton scattering
- beam & laser parameters
- deflecting dipole fields

 $\label{eq:position} \bigcup_{i=1}^{n} \mathbb{P}(e^{i+i})$ On the detector surface

Start with a general photo detector:

- Size & geometry of the channels
- Output: \approx number of Compton electrons (+ syst. effects)

Add other modules: e.g. gas filled tubes + PMs (as in TESLA TDR)

- Number of channels $(20) \rightarrow$ Cherenkov spectrum
- Losses due to reflection/refraction
- Quantum efficiency of the photo detectors
- Non-linearities of ADCs, photo detectors, (others devices?)

- optimize the design parameters one by one. . .
- later: utilize realistic resolution

Polarimetrie at the ILC

59.12

7.366

80

2023.

257.6

20 / 22

- Polarisation measurements at the ILC need to be more than 2 times more precise than all previous measurements (incl. SLD polarimeter)
- Design of Laser cavities and dipole magnets ("chikane") done
- Cherenkov detector: design, photo detectors, simulations, ...
- The required precision has to be achieved!
- Number of polarimeters not yet clear: 3 ... 8 ? (depends on the number of IPs and up-/downstream measurements) Spin transport: calculations & simulations are difficult → Measurement is clearly preferred !
- Assembly of a first proto type...

BACKUP

Daniela Käfer · · · Beam Delivery Meeting · · · 01/30/07 Polarimetrie at the ILC