

The MAPS ECAL Status and prospects Fermilab 10/Apr/2007

Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy Imperial College London J.P. Crooks, <u>M. Stanitzki</u>, K.D. Stefanov, R. Turchetta, M. Tyndel, E.G. Villani Rutherford Appleton Laboratory

1

Overview

- Introduction
- Status
 - Sensor Design
 - Sensor Simulation
 - DAQ/Testing
 - Detector Simulations
- Next steps

Introduction

- This is done within the context of CALICE
- Not for a particular detector concept
- Development of an alternative readout sensor for a SiW based ECAL
- "Swap-In" Solution leaving mechanical structure untouched
- Using MAPS with high granularity and digital readout
 - Should help Particle Flow Algorithms
 - But it will be a Tera-Pixel Calorimeter...

What are MAPS ?

- Monolithic Active Pixel Sensors
- Integration of Sensor and Readout Electronics
- Manufactured in Standard CMOS process
- Collects charge mainly by diffusion
- Development started in the mid-nineties, now a mature technology

Science & Technology Facilities Council Rutherford Appleton Laboratory

MAPS in Detail

MAPS architecture:

•Sensor and the electronics are integrated in one wafer

- •Charge Collection mainly in epi-layer
- •Charge collected mostly due to diffusion

Science & Technology Facilities Council Rutherford Appleton Laboratory

The ECAL MAPS

For the MAPS ECAL a specific MAPS was designed:

- Pixel Size (50 x 50 µm)
- Binary Readout (1 bit ADC realized as Comparator)
- 4 Diodes for Charge Collection
- Time Stamping with 13 bits (8192 bunches)
- Hit buffering for entire bunch train
- Capability to mask individual pixels
- Threshold adjustment for each pixel

A new process technology

- Simulation showed, that the electronics n-wells absorb a lot of charge (affects the signal)
- We isolated the n-well with a "deep p-well" implant (3 µm thick)
- Standard for deep n-well ("triple well")
- Novel INMAPS process used for the ECAL MAPS

Diodes

Incoming particle

Epi

Sensor Electronics

- Two types of pixel readout
- Shaper & Sample

	Pre-Shaper	Pre-Sampler			
Deadtime	Varies with Signal	Constant			
Reset	no reset	Self-resetting			
Diode mode	Current	Voltage			

- Deadtime (~600 ns/ 450 ns)
- Simulation shows similar noise characteristics
- Both share the Comparator design and everything downstream
- Having two front-end architectures allows us to explore several ideas at once

The two pixels

The Pixel

- 50x50 µm size
- 0.18 µm process
- 12 µm Epi-layer (for test run)
- Deep p-wells
- 6 metal layers
- 224 1.8 V transistors
- 1 3.3 V transistor
- 36 capacitors

The sensor unit (V1.0)

12

- Consists of 42x84 pixels
- Has a logic strip for
 - 5 pixels wide
 - Hit buffering using SRAM technology, 19 Hits per Row
 - Time stamping (13 bit)
 - Configuration registers
 - the only part with Clock lines
- Logic strip is a "dead area" for particle detection (~ 11 % inefficiency)

Science & Technology Facilities Council Rutherford Appleton Laboratory

Data format

- A row of 42 pixels is split into 7 groups of 6 pixels each ("patterns")
- The logic writes the following data format for each row
 - Time stamp (13 bits)
 - pattern number (3bits)
 - pattern (6 Bits)
- 1 Hit = 22 Bits
- On top : Row Enconding (9 Bits)
- 1 Hit = 31 Bit altogether

Science & Technology Facilities Council Rutherford Appleton Laboratory

The test sensor (V1.0)

- 8 units (1 x 1 cm)
- A unit is uniform, but units are different
- 2 pixel architectures
- 2 capacitor arrangements
- 6 million transistors in total

Sensor Simulation

- We are using Centaurus TCAD to simulate the sensor
- Using CADENCE GDS file for pixel description
- Simulate diodes from adjacent pixels for charge sharing effects
- Detailed Pixel performance studies
 - Collection Efficiency
 - Charge Collection Time
 - Signal/Noise

Rutherford Appleton Laboratory

Simulation Setup

Charge Collection

Total charge generated : ~ 1300 electrons

Charge collected 0.9µm ▼ 1.8µm ▲ 3.6µm Charge (e-) Time (ns) 600 -♦ 0.9µm ▼ 1.8µm ▲ 3.6µm 0 -0 -Distance to Diode (µm) Distance to Diode (µm)

Main parameter to vary is Diode Size

ILC Bunch spacing ~ 300 ns

Collection Time

Signal/Noise

Signal/Noise

*N.B. S/N 0.9µm N = 16 e-

*N.B. S/N 1.8µm N = 16.5 e⁻

*N.B. S/N 3.6µm N = 21.3 e⁻

• Signal to Noise > 15 for 1.8 µm Diode Size

- Some uncertainty for the absolute Noise levels, due to simulation imperfections
- Critical Measurement with the real sensor

Noise Occupancy

- Noise for 2880 bunches
- With Noise= $O(10^{-6})$
 - P=0.3 % for 1 hit per pixel
 - P=0.0004 % for 2 hit per pixel
- But O(10¹²) pixels !
 - $\sim 3 \ 10^9$ single hits
 - \sim 4 10⁶ double hits
 - ~0 triple hits
- Per Row (42 pixels) 0.15 Hits

MAPS DAQ & Testing

- Development of DAQ board and firmware has started
- Complete test setup foreseen
 - Cosmics
 - Sources
 - Laser
 - Test beam

RAL Laser Test setup

22

- Powerful Laser setup
- 1064, 532 and 355 nm Wavelength
- Accurate focusing (<2 µm at longest wavelength)
- Pulse Width 4 ns
- 50 Hz Repetition rate
- Fully automatized

Rutherford Appleton Laboratory

Science & Technology Facilities Council

Will be used to test the MAPS

Simulation Chain

Science & Technology Facilities Council Rutherford Appleton Laboratory

Mokka Detector Simulation

- Implementation of the MAPS into MOKKA
 - Patched MOKKA 6.02
- 50x50 µm pixel size
- 15 µm "Active Area" (Epi-layer)
- Detector Model used LDC01(Sc)
- ECAL with 30 layers
 - 20 layers 2.1 mm Tungsten
 - 10 layers 4.2 mm Tungsten
- Charge diffusion and thresholds are implemented in a separate "Digitization" step

Shower Shapes

GEANT4 : One 20 GeV Electron shot along y-axis

Simulation Chain

Running with SLIC

Simulation Chain

Charge sharing algorithm

Basic Hit Clustering

Hit Clustering

- Loop over hits classified by number of neighbors
- Number of neighbors < 8 : count only 1 (or 2 for last 10 layers) and discard the neighbors
- 8 neighbors AND one of the neighbor has 8 neighbors : count 2 (or 4) and discard the neighbors

Clustering (II)

Science & Technology Facilities Council Rutherford Appleton Laboratory

Beam background

- Done using GuineaPIG
- Trying to estimate beam induced background in the ECAL
- Testing two scenarios
 - 500 GeV Baseline
 - 1 TeV High Lum
- 1 TeV High Lum is "worst-case" scenario

1 TeV High Luminosity

"Ring of Fire" for small ECAL Radii

Beam Background Occupancy

1TeV High Lum Based on 30 layers of 50x50 µm

Design Issues

- Pixel parameters
 - Pixel size
 - Number of Diodes / Diode size
- PCB/Readout Chips
- Stave Structure
- Power
- DAQ
- Manufacturing

Pixel parameters

- MAPS Pixels improve spatial resolution/granularity by a factor of ~ 1000 compared to analog pad ECAL
- Lower pixel size is set by size of the integrated electronics (lower boundary of 50 μm) and charge diffusion
- Upper bound set by charge collection time/efficiency and multiple hits
- No fixed upper bound, reasonable value is around 100 μm
- Best performance found with 4 diodes is for 1.8 μm diode size

PCB/ Readout Chip

- All the electronics is integrated within the the sensor
- No need for
 - Complicated PCB design
 - Dedicated Readout Chip
- Still needs to provide Power/Clocks/Commands to the MAPS
- Can be done by "Stave Controller" at the end of the Stave

Stave Structure

Embedded VFE ASIC

- MAPS can be used as swap-in solution without alterations to the mechanical design (Baseline)
- One can also take further use of MAPS benefits

How it could look like

- Take advantage of MAPS benefits
- Lack of hybrids/ASIC allow less complex/thinner PCB
- Thinner sensors (down to 100 μ m)
- Bump-bond MAPS

MAPS

Power

- Cooling for the ECAL is a general issue
- Power Savings due to Duty Cycle (1%)
- Target Value for baseline ECAL 4 μ W/mm² (CALICE)
- Current Consumption of MAPS
- ECAL: 40 μ W/mm² depending on pixel architecture
- Compared to analog pad ECAL
 - Factor 1000 more Channels
 - Factor 10 more power
- Advantage: Heat load is spread evenly

Power prospects

- V1.0 not been optimized for power consumption
 - Proof of Concept and Technology
 - Not the final product
- Options to be explored
 - Larger pixel (50 µm->100 µm) Factor 4 less
 - Longer integrations times if pile-up acceptable, possible factor of 2
 - Smaller feature size (~30-50 %)
 - Lowering Operating Voltages (~10%)
- Sensor V1.0 will allow us to explore some of these

DAQ data volume

- Physics rate is not the limiting factor
- Beam background and Noise will dominate
- Assuming 2880 bunches and 32 bits per Hit
 - 10⁶ Noise hits per bunch
 - ~O(1000) Hits from Beam background per bunch (estimated)
- Per bunch train
 - ~ ~88 Gbit / 11 Gigabyte
 - Readout speed required 440 Gbit/s
 - CDF SVX-II can do 144 Gbit/s already

Manufacturing

- Sensor manufacturing
 - Need for large scale process (2000-3000 m²)
 - Factor 10 of CMS (205 m²)
 - CMOS is an industry standard process
 - Many foundries can do it
 - CMOS wafers are readily available
 - CMOS is ~2 cheaper than "HEP-style" silicon
- Stave manufacturing
 - Less complex structure due to lack of VFE ASIC
 - No substrate connection to ground required

Science & Technology Facilities Council Rutherford Appleton Laboratory

What happens next ?

- Submit Sensor V1.0 April 23rd
- Sensor V1.0 due back Mid July
- Improve/enhance GEANT simulation
- Testing Sensor V1.0
- Do physics studies with a MAPS based ECAL
- Improve sensor simulation with data from V1.0

Sensor V2.0

- Will be based on experience made with V1.0
- Larger structures 2x2cm per module
- Only one Pixel readout architecture
- More power optimized
- Submission date Summer 2008

Summary

- MAPS effort is advancing well
- Sensor V1.0 is almost done and be submitted next week
- Will be the proof of concept
- Simulation of a MAPS ECAL is in place
 - Will need tuning with results from sensor V1.0
- Sensor V2.0 will be close to real system
- Will be ready when Detector EDR will be required.

Diode placement

- Classical problem
 - Place n circles in a square
 - No analytical solution
- Only 4 Diodes as a starter §
- Mathematics faces reality
 - Constraints due to Design Rules
 - Electronics
 - Space

Numerical Solution

Spatial resolution in x

GEANT4 :20 GeV Electrons shot along y-axis

Linear Response

Linear response for electrons up to 400 GeV GEANT4 level without charge diffusion

Resolution

Good resolution over wide energy range GEANT4 level without charge diffusion

First results

- Algorithm depends on accurate simulation input from Centaurus
- First results shows algorithm work nicely
- Does not take into account deep p-well yet
- Will be updated with the latest pixel simulations and noise estimates

Hit weighting

Hit Counting:

Hit x 2 in the last 10 layers to account for the double tungsten thickness.

$$N_{tot} = \sum_{l=1}^{20} n_l + 2 \times \sum_{l=21}^{30} n_l$$

Dead area

• We have an area of 5 dead pixels every 42 sensitive pixels for the logic strip.

Cooling cont'd

ILC configurations

	Nominal	Low Q	Large Y	Low P	High Lum	Nominal	Low Q	Large Y	Low P	High Lum
Ecms	500	500	500	500	500	1000	1000	1000	1000	1000
gamma	4.89E+05	4.89E+05	4.89E+05	4.89E+05	4.89E+05	9.78E+05	9.78E+05	9.78E+05	9.78E+05	9.78E+05
Ν	2.05E+10	1.05E+10	2.05E+10	2.05E+10	2.05E+10	2.05E+10	1.05E+10	2.05E+10	2.05E+10	2.05E+10
nb	2625	5120	2625	1320	2625	2625	5120	2625	1640	2625
Tsep [ns]	369.2	189.2	369.2	480.0	369.2	369.2	189.2	369.2	480.0	369.2
Buchets @ 1.3 GHz	480	246	480	624	480	480	246	480	624	480
lave	0.0089	0.0089	0.0089	0.0068	0.0089	0.0089	0.0089	0.0089	0.0068	0.0089
Gradient	31.50	31.50	31.50	31.50	31.50	31.50	31.50	31.50	31.50	31.50
Cavities / 10 MW klys	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00
Q0	1.00E+10									
Qext	3.60E+06	3.60E+06	3.60E+06	4.68E+06	3.60E+06	3.60E+06	3.60E+06	3.60E+06	4.68E+06	3.60E+06
Tbeam (us)	969.2	968.9	969.2	633.6	969.2	969.2	968.9	969.2	787.2	969.2
Tfill (us)	604.6	605.0	604.6	786.0	604.6	604.6	605.0	604.6	786.0	604.6
Trf (ms)	1.57	1.57	1.57	1.42	1.57	1.57	1.57	1.57	1.57	1.57

