The silicon Hybrid Alignment System

Presented by: Marcos Fernandez Garcia Supported by the FP6-Infrastructure I3 European Project EuDET

SiD Detector Concept Workshop FNAL- 09 April 2007

The silicon Hybrid Alignment System Outline

Introduction

Hybrid alignment systems in HEP experiments

ILC approach and actual proposals

IFCA Santander:

- Instituto de Fisica de Cantabria IFCA SiLC (a.o.): Marcos Fernandez, Sven Heinemeyer, Amparo Lopez, Celso Martinez,, Alberto Ruiz, Ivan Vila
- IFCA is a member of the EuDET European FP6-I3 project and of the SiLC R&D collaboration

— SiLC (**Si**licon for the Liner Collider) is a generic R&D collaboration that studies all the tracking concepts for the ILC, with or without a TPC

• For CMS, among other activities, we have conceived, developed, tested and now installed the Link alignment system of CMS.

— This system uses transparent position optical sensors to reference the (inner) central tracker with respect to the (outer) muon system

Multipoint alignment: Alignment of consecutive detectors using a single reference

• For the ILC, the proposal is to **align Si modules using an IR laser beam** which passes through several Si μ -strip sensors = IR multipoint optical system

Si is almost transparent to IR light. Still, its (slight) absorption is enough to produce a measurable signal

- Beam position across several sensors can thus be measured.
- Remaining sensors are reconstructed using tracks in overlap region.
- Subsequent track alignment reduces precision 1 order of magnitude.

Advantages of this approach:

— Sensors under study are their own alignment system \Rightarrow No mechanical transfer errors between fiducial marks and the modules

- Minimum impact on system integration
- Straightforward DAQ integration \Rightarrow Alignment data is read out using Si DAQ

 Alignment system does not compromise tracker design: changes in geometry of the modules have no impact in system precision

Requirements of this approach:

- Alignment system must be taken into account from the design phase

— Modifications of the sensor needed in a \sim 10 mm diameter optical window: (removal of aluminum backelectrode locally)

80 -60 -

Successful predecesors ...

strip sensor / mm

 $\lambda = 1075 \text{ nm}$

• Optimization of sensors not included from beginning of sensor design \Rightarrow lower transmittance achieved~20%

• 180 deg beam splitters in the middle of the tracker produce back to back beams measured by modules

- Laser spot reconstructed with 10 μm resolution

ILC: 2-fold approach

AMS-like approach:

Baseline version: Minimum set of changes requested

- \emptyset ~10 mm window where AI back-metalization has been removed
- Strip width reduction (in alignment window)
- Alternate strip removal (in alignment window)
- T-improved version: Baseline version + thickness optimization in local alignment window

50um

R&D on transparent Silicon µstrip sensors:

- Together with IMB-CNM (Barcelona), we will develop prototypes of these sensors (Sep'07)
- Aluminum electrodes and strip are perfect mirrors. Substitute Al electrodes by TRANSPARENT ELECTRODES.
- Candidates TCOs available: ITO, AZO,...

Optical figures for common Si µstrip materials

- Passivation, insulator, ITO-electrodes $\lambda_{_{ITO}}$ [0-300] nm, all transmit>80% in a broad wavelength range
- Typical absorption for Silicon [200-320] μm thick

 $\lambda = 1140 \text{ nm} \implies A \sim 5\%$

• Typical laser diodes of 10⁸ photon/pulse

 In the following slides we show simulated optical figures of Si-µstrip sensors (Transmittance, Reflectance and Absorptance)

Simulation of Si µ-strip sensors

- The sensor is modeled as a multilayer media. Simulation features:
 - Interferential effects due to multiple reflections are considered
 - Absorption effects are included
 - Refraction index (n,k) is a function of λ
 - Typical deposition thicknesses considered
 - Deposition tolerances are included \Rightarrow We simulate realistic designs
 - Laser spectral width is assumed (±2.5 x 2 nm)
- Simulation particularities:
 - Multilayers are left/right borderless
 - Effect of aluminum electrodes is not included yet
 - Energy going to secondary and higher order maxima (grid effect) is included
- Aim is to achieve a transmittance as high as possible with moderate absorption (>3%)

Transmittance	90%	80%	70%	60%	50%	40%
Traversed	30	15	10	7	5	4

T-improved approach (AMS-like)

 Tolerances of deposited SiO2 (542 nm) materials are taken into account: (2% for Si3N4 and SiO2)

<u>Upper plot</u> shows T,R,A for the sensor specified in the box. Calculated thicknesses ±tolerances are specified

Bottom plot shows T in a narrow wavelength range, for thicknesses varied within tolerances

- Ripples due to thick layers. Thinned top and bottom layer smoother ripples
- **Aluminum strips** not simulated. (work is ongoing)

– naïve (and probably wrong) approximation:

 $T_{Al} = T \times (1 - \frac{S_{Al}}{2})$

Si (320 μm)

<u>Si3N4 (1 µm)</u>

SiO2 (368 nm)

Marcos Fernandez -IFCA 8

Characteristics of design:

- Electrodes simulated: Transparent strips made of ITO (continuous layer, yet)
- Typical deposited thicknesses
- Tolerances taken into account:
 - 2% SiO2, Si3N4
 - 10% ITO
 - 5% Cu2O
- Higher absorption (lower laser power needed)
- Lower interferential effects, less energy lost in secondary maxima, better precision.
- First prototypes with IMB-CNM (Barcelona) expected by Sept. 2007
- We have more time to refine it, yet

- Presented R&D activity developed within SiLC Collaboration and EuDET project
- Alignment of Si µstrip sensors is eased using IR beams (pseudotracks).
 - No need for external monitoring systems
 - No impact on system integration and Si-DAQ
 - No extra material budget
- Changes during production process:
 - Al backplane must have a 10 mm diameter window (very easy during production)
 - Fraction of Aluminum strip on this window (front side) must be minimized as much as possible
- If the thickness is not optimized transmittance values will be, most likely, below 50%
 - Tuning of thicknesses in the local window boosts transmittance
- R&D on sensors with transparent electrodes started