Scintillator HCAL R&D:

direct coupling test with green scintillator

Victor Rykalin for NICADD NIU

OUTLINE

- 1. Premises
- 2. Cosmic test setup
- 3. Cosmic test results
- 4. Uniformity test results
- 5. Summary

Premises

- Fibreless readout is a part of R&D to optimize the final design. WLS Fiber readout has been extensively investigated.
- Possibility of integration(Sensor-PCB-ASIC).
- Availability of the SSPM optimized for the green light.

! WLS fiber readout has been extensively investigated by NICADD and CALICE collaboration

> ! For the low PDE eff. SSPM (13 % in green) for the WLS readout of blue scintillator, 5 mm. ~ 15 PE.

While this design can work with a fiber-in-cell elements a further simplification in assembly and largescale production may be possible if direct coupling can be shown to work !

Basic elements of fibreless readout

Parameter	Units	Typical Values	Comments	Parameter	Units	Typical Values	Comments
Peak Sensitivity Wavelength	nm	<u>580</u>	$= \hat{\lambda}_p$	Peak sensitivity wavelength	nm	580	$= \lambda_p$
Single photon detection efficiency	%	>20	at λ ₂	Single photon detection efficiency	%	26 / 13	at λ_p / at 450nm
Operating Voltage				Operating voltage	v	20.5	= V _R
Operating voltage	٧	30	= V _R		,	19.5 - 20.5	Recommended range
		29.8 - 30.6	Recommended range	Gain		1.5 x 10 ⁵	at $\boldsymbol{V}_{\boldsymbol{R}}$ using 40ns integration window
Gain		1.8 x 10 ⁵	at V_R	Dark current	μA	<18	typical at V_R
Dark current	μA	10	typical at V_R	Capacitance	pF	~170	at \boldsymbol{V}_R and readout rate $~\boldsymbol{f}_R$ =1MHz
Capacitance	pF	40	at V_R and readout rate f_R =1MHz	Excess noise factor		<1.1	at V_R , f_R and λ_P
Evrace noice factor		<1.05	- 12 - 1 - A	Signal rise time	ns	<3	
Excess noise factor		21.00	at V_R , f_R and λ_P	Number of micro-cells		1700	
Signal rise time	ns	<2		Operating Temperature	Co	-40 +40	
Number of micro-cells		~500		Storage Temperature	C ₀	-40 +60	
Fill or Geometric Factor	%	>70		Max. sensor temperature during soldering	Co	110	

Scintillator and photo-sensors

We used 3*3 cm2 green emission scintillator, wrapped in VM2000, 6.2 mm in thickness, edges cut, not polished, painted in white.

Light Output, % Anthracene	60%
Scintllation effici., photons/1MeV e ⁻	9,200
Wavelength of max emission, nm	490
Rise Time, nSec	
Decay Time, nSec	
No. of H atoms per cm ³ x 10 ²²	5.21
No. of C atoms per cm ³ x 10 ²²	4.70
No. of electrons per cm ³ x 10 ²³	3.35
Density, g/cc	1.02

vendors and characteristics

4/8/2007

Cosmic test setup

Positions of the sensor during measurements

Normalization with fit: Center - 100% Edge - 94% Corner - 66%

[3], ∆=591

2000

1000

[1], **Δ=890**

10

3D distribution of the signal intensity in the green scintillator cell.

HAMAMATSU

<u>100 pixels</u> <u>100X100 μm</u> <u>78% - fill factor</u> <u>PDE~50%</u>

Gain~2.4*10⁶

Specifications (Ta=25 'C)

Deservation	Gundard		11-24			
Parameter	Symbol	-025U, -025C	-050U, -050C	-100U, -100C	Unit	
Chip size			mm			
Effective active area	-		mm			
Number of pixels	-	1600	400	100	-	
Pixel size		25×25	50 × 50	100×100	μm	
Fill factor *1	-	30.8	61.5	78.5	%	
Spectral response range	λ		270 to 900	nm		
Peak sensitivity wavelength	λρ		400	nm		
Quantum efficiency (λ-λp)	QE	%				
Photon detection efficiency ^{*2} (λ-λp)	PDE	25	50	65	%	
Operating voltage	-	77 ± 10	70 ± 10	70 ± 10	V	
Dark count	-	100	270	400	kaps	
Terminal capacitance	Ct		pF			
Time resolution (FWHM)	-	250	220	250	ps	
Temperature coefficient of reverse bias	-		mV/°C			
Gain M		2.75 × 10 ⁶	7.5 × 10°	$2.4 \times 10^{\circ}$		

"1: Ratio of the active area of a pixel to the entire area of the pixel.

*2: Photon detection efficiency includes crosstalk and afterpulses.

Note: The last letter of each type number indicates package materials (U: metal, C: ceramic).

HAMAMATSU single-electron calibration

Signal from cosmic

^{[2] &}lt;u>A</u> =2608

PDE at 500 nm ~ 45%

HAMAMATSU cosmic(optical grease vs. no grease)

Cosmic test overview

- SSPM (CPTA) and HAMAMATSU have been tested.
- Absence of single electron separation for SSPM (CPTA) creates problems for calibration (for the setup we use).
- The best (expected) result came from HAMAMATSU with 100 pixels.
- Optical coupling through the grease improves results by 50 %.
- Uniformity test is necessary.

D.C. measurements with radioactive source Sr ⁹⁰

Scan test

37% non uniformity

20% non uniformity

Scan test

40% non uniformity

Comparative scan test

Thickness impact

4/8/2007 ~40% non - uniformity for 6 mm

~75 % non - uniformity for 3 mm

22

Summary

- Direct coupling between green scintillator and SSPM looks promising ~ 19 PE for the sensor of 100 pixels.
- Uniformity scan shows applicability of the method, ~ 40 % non-uniformity from center to edge for 6 mm thick green scintillator.
- Non-uniformity increases when thickness decreases.
- Optical coupling(cement, no cement) still an issue.
- More R&D is necessary

Cross – reference test at the corner with a new trigger(replaced trigger scintillators)

HOW to get PE from calibration

1PE in PHYSICS mode is

154.9 ADC counts

