CCD-based Pixel Detectors by LCFI

Andrei Nomerotski (U.Oxford) on behalf of LCFI collaboration SiD workshop, Fermilab April 2007

Outline

- CCD Sensors and Readout
 - Column-Parallel CCDs
 - Storage Pixels : ISIS
- Mechanical Studies

Column Parallel CCD

● Simple idea : read out a vector instead of a matrix → Readout time shortened by orders of magnitude

BUT

- Every column needs own amplifier and ADC \rightarrow requires readout chip
- Need to operate at 50 MHz to meet readout rate spec → 20 Amp clock current Driving of CPCCD is a major challenge

Voltage drops 20 A x 0.1 Ohm = 2 V
Inductance of 1mm long bond wire = 1 nH, corresponds to 0.3 Ohm at 50 MHz

CPCCD : LCFI R&D Milestones

- Established proof of principle for small area sensors : CPC1
- Established proof of principle for readout chip : CPR1, developed and produced more sophisticated CPR2
- Moved on to large area sensors : CPC2
 - Produced and tested busline free high speed CPC2
 - Testing of CPC2/CPR2 assemblies
 - Need to handle the problem of clock driver
 - 1. Design dedicated clock driver : CPD1
 - 2. Find ways to reduce the CCD capacitance
 - 3. Find ways to reduce the required clock voltage

Second Generation CPCCD : CPC2

CPC2-10

- 6 wafers with single level metal:
 - Four CPC2 wafers (3 \times 100 $\Omega.cm/25~\mu m$ epi and one 1.5k $\Omega.cm/50~\mu m$ epi)
 - Two 100 Ω .cm wafers bump bonded at VTT to CPR2 readout chip
- 2 CPC2 wafers with 2-level metal (busline-free CCD) delivered in November 2006
 - Designed to reach 50 MHz operation
- •Have another 12 wafers to be processed after evaluation of the present variants

Yield from 4 single metal CPC2 wafers: 71% for CPC2-10, 63% for CPC2-40, 25% for CPC2-70

CPC2 Results at 1 MHz

CPC2: Double Level Metal

Busline-free CPC2

•Devices with 2-level metal clock distribution for high speed (buslinefree) have been received

•The whole image area serves as a distributed busline

•Parasitic inductance is minimized but capacitance is larger by factor of ~2

Busline Free CPC2 Testing

• CPC2-10 wire bonded to mother-board with transformer drive

• ⁵⁵Fe X-ray signals observed at up to 45 MHz!

Busline Free CPC2 Tests

- Established operation at up to 45 MHz
 - Observed higher noise- due to RF amplifier used to provide clock
 - Work is in progress to improve the transformer drive circuit
- Observed efficient charge transfer with 0.4 V_{PP} clock signals
 - Expected 2 V_{pp}
 - Not a resonance effect.
 - Studying test structures from the same wafers to understand implant concentrations

CPC2 Bump Bonded to CPR2

- CPC2 and CPR2 were successfully bump bonded at VTT
- Tests started saw first X-ray spectra
- Two assemblies died after a short period
 - Work in progress to understand this and implement more monitoring and safety features

Johan Fopma/Brian Hawes, Oxford U

Clock Drivers for CPC2

Requirements: 2 V_{pk-pk} at 50 MHz over 40 nF

Transformer

- Planar air core transformers on 10-layer PC, size
 1 cm²
- Parasitic inductance of bond wires is a major effect
- •Used to drive high speed busline-free CPC2

Custom clock driver: CPD1 chip

- •First CPCCD driver chip (CPD1) delivered in October 2006
- •Designed to drive the outer layer CCDs (127 nF/phase) at 25 MHz and the L1 CCD (40 nF/phase) at 50 MHz
- •One chip drives 2 phases, 3.3 V clock swing
- •0.35 μ m process, size \approx 3 x 8 mm²
- •32 W peak power but 0.5% duty cycle
- •Thermal and electromigration issues are under control

Steve Thomas/Peter Murray, RAL

CPD1 Tests

- Standalone tests of CPD1 use a dedicated board
- Test board allows to exercise various modes of operation and provides external capacitive load
- Parasitic inductance is dominated by bond wires
- CPD1 has 8 sections
 - One of the sections is connected to 2nF internal capacitor to test the performance with minimal inductance
 - Outputs have alternating PH1/PH2 pads to minimize inductance

CPD1 Results

CPD1 Tests

- Next step: operation of CPC2 with CPD1
- New test board in preparation
 - Two CPD1 chips will drive one CPC2
 - Need to interface CPC2 clock bonding pads to CPD1 bonding pads keeping the parasitic inductance low – will have a small adapter board between CPC2 and CPD1
- Should have results by the summer

New Ideas: CCDs for Capacitance Reduction

• High CCD capacitance is a challenge to drive because of the currents involved - Can we reduce the capacitance?

- \bullet Inter-gate capacitance C_{ig} is dominant, depends mostly on the size of the gaps and the gate area
- •Theoretically can achieve factor of 4 reduction in C
- •Prepared several designs together with e2V and ordered mini CPCCDs: 10(H)×480(V) pixels

Capacitance Overlap Measurements

- Have test structures with variable overlap distance between gates
- Will provide data on relationship between design and actual inter-gate overlap
- Useful to verify simulation of intergate capacitance
- First results show evidence of non-linearity around overlap of zero
 - Absolute calibration needs to be improved

Readout Chips – CPR1 and CPR2

Wire/Bump bond pads

Steve Thomas/Peter Murray, RAL

- CPR2 designed for CPC2
- Results from CPR1 taken into account
- Numerous test features
- Size : 6 mm × 9.5 mm
- 0.25 µm CMOS process (IBM)

• Work in progress to design CPR2A with improved performance

In-situ Storage Image Sensor : ISIS

- Charge is collected into a photogate
- Each pixel has its own 20-cell CCD register : store raw charge during collisions
- Increased resistance to EMI
- Column-parallel readout during quiet time at ~1 MHz: much reduced clocking requirements

Tests of ISIS1

Tests with ⁵⁵Fe source

• ISIS1 without *p*-well tested first and works OK

• ISIS1 with *p*-well has very large transistor thresholds, permanently off – problem understood and e2V is processing a new batch with p-well

Work with 3 other vendors to design ISIS2 with pixel size $\sim 40x50$ ₁₉micron

Mechanical Options

Target of 0.1% X₀ per layer (100µm silicon equivalent)

- Unsupported Silicon
 - Longitudinal tensioning provides stiffness
 - No lateral stability
 - Not believed to be promising
- Thin Substrates
 - Detector can be thinned to epitaxial layer (~20 μm)
 - Silicon glued to low mass substrate for lateral stability
 - Longitudinal stiffness still from moderate tension
 - Beryllium has best specific stiffness
- Rigid Structures
 - Foams look very promising

Be and Carbon Fibre Substrates

- Beryllium substrate
 - Minimum thickness 0.15% X₀
 - Good qualitative agreement from FEA models and measurement

- Carbon Fibre substrate
 - Better CTE match than Be
 - ~0.09% X₀, no rippling to <200K
 → lateral stability insufficient

Rigid Structures: Foams

- RVC (Reticulated Vitreous Carbon) and silicon carbide are excellent thermal match to silicon
- Silicon-RVC foam sandwich (~3% density)
 - Foam (1.5mm thick), sandwiched between two 25 µm silicon pieces – required for rigidity
 - Achieves 0.09% X0
- Silicon on SiC foam (~ 8% density)
 - Silicon (25 µm) on SiC foam (1.5mm);
 - Achieves 0.16% X0
 - 0.09% X0 possible with lower density foams (< 5%)

Andrei Nomerotski

LCFI Vertexing and Flavour Tagging Package

- Implementation of ZVTOP algorithm used at SLD
 - ZVKIN part (ghost track) is impelented as well
- Flavour Tagging Package is using Neural Net based on inputs from the Vertexing Package
- Both packages are fully interfaced to MarlinReco reconstruction framework
 - Marlin processes exist for all parts of the two packages
- System tests with SGV (fast MC) and MOKKA (full Geant based MC) both give good results
- Documentation is being finalized
- Pilot testing by users has started
- Plan to officially release in April

Summary

- Detector-scale CCDs produced and tested
- First successful readout at 45 MHz
- Demonstrated first sparsified readout with CPR2
- Developed and operated 20A clock driver chip CPD1
- Tested first prototypes of storage devices

- Mechanics : rigid foams favoured as sensor support substrates
- Physics studies : Vertexing and flavour tagging package will be released this month