Status & results of PFA studies at U. Iowa

Mat Charles Usha Mallik

Event Type

- This produces jets that have realistic energies, but without excessive overlap.
- No confusion from jet-finding when calculating dijet mass.

Barrel angle cuts

- For $e^+e^- \rightarrow ZZ, Z \rightarrow light$ jets, jets tend to be produced at small angles.
- In most events, a lot of energy goes down the beampipe and resolution is lousy even with perfect pattern recognition.
- So we will look only at barrel events, defined by one of:
 - Thrust of reconstructed jet has $|\cos \theta| < 0.8$
 - Generated quark has $|\cos \theta| < 0.8$ in truth info
- Turns out not to make a big difference which we use.

acme0605

Event mass in barrel

acme0605

Mass residuals in barrel

acme0605

Almost no change w.r.t. nominal barrel cut

acme0605_steel_scint

Event mass in barrel

acme0605_steel_scint

Mass residuals in barrel

acme0605_steel_rpc

Event mass in barrel

acme0605_steel_rpc

Mass residuals in barrel

Summary

Design	RMS ₉₀ of mass (including Γ)	RMS ₉₀ of residuals (no Γ)	Bias
acme0605 [<mark>w/scint</mark>]	6.9 GeV	6.I GeV	-5.2 GeV
acme0605 <u>steel</u> scint	7.3 GeV	6.5 GeV	-7.4 GeV
acme0605_w_rpc	6.6 GeV	5.7 GeV	-3.8 GeV
acme0605 <u>steel</u> rpc	6.8 GeV	5.9 GeV	-2.6 GeV

For this real (i.e. confused) PFA:

- RPCs give noticeably better resolution and smaller bias than scintillators
- Tungsten gives somewhat better resolution than steel

Next steps

• Code is in CVS (but considered unstable)

- org.lcsim.contrib.uiowa.NonTrivialPFA
- org.lcsim.contrib.uiowa.NonTrivialPFAWrapper
- org.lcsim.contrib.uiowa.NonTrivialPFAWrite
- Work with Ron to feed the PFA output into his analysis tools (we are close!)
- Look again at the origin of the bias
 - For energy sums it was an excess of (neutral → charged) confusion over (charged → neutral)... is that still true for the dijet mass?
- Algorithm development, testing of new components
- Move on to next event type (4 jets)