

Superconducting Magnet Division

Preliminary Study of Possibility of HTS Use in ILC Extraction Quadrupole

Ramesh Gupta

Brookhaven National Laboratory

Ramesh Gupta, BNL, Feb. 27, 2007

Superconducting Magnet Division Why HTS Super-ferric Magnets?

This presentation is not intended to cover this topic.

Basically we are trying to find out if there is a region where HTS medium field magnets can be competitive in terms of "cost of ownership (capital + operation)" as compared to "water cooled copper magnets" and/or super-ferric magnets made with convention "Low Temperature Superconductors (LTS)".

HTS magnets offer several other benefits as well.

•In case of RIA, HTS quadrupole for fragment separator region also turned out to be cheaper in cost as compared to water-cooled copper magnet. The original reason for choosing HTS was a better technical solution (higher gradient).

•HTS quad operating at ~30 K was preferred over LTS to remove large energy (15 kW in first quad) economically at ~30 K rather than at ~4 K.

Superconducting Magnet Division

Preliminary Investigation of HTS Quadrupole for ILC (QFEX4B-4E)

Design goals of this investigation:

- Use 2nd generation HTS (YBCO).
- Operate at 65 K or above (use subcool nitrogen or cryo-coolers).
- Design with the conductor available
- today (improved performance would reduce conductor cost and coil size).
- Warm iron compact design with low fringe field (seems to meet ILC spec).

HTS magnets would be more compact plus energy efficient as compared to water cooled magnets; and would allow larger temperature excursions as compared to LTS magnets.

Basic design parameters (as per slac-pub-1159, updated by C. Spencer):

Good field radius = 85 mm; Gradient ~11.8 T/m Above quad is designed for a minimum pole radius = 90 mm; Gradient = 13^{+} T/m

Preliminary Design

Superconducting Magnet Division

Not good to go in machine, but good enough for proof-of-principle

9 cm minimum pole radius, 13 T/m Gradient, 40 cm yoke outer radius

Superconducting

HTS Quadrupole For RIA

Recently we completed a successful testing HTS R&D quadrupole for RIA (Rare Isotope Accelerator)

The test also involved a 40^+ minutes of stable operation at 30 K with a huge 25 W (5W/cm³ or 5MW/m³) heat load on coils.

77 K Performance of First and Second Generation HTS from ASC

Superconducting Magnet Division

Second generation HTS are new.

Expect a significant improvement in performance and reduction in cost

