GamCal Issues

William Morse - BNL

W. Morse MDI March 6 2007

FCAL R&D Collaboration

- W. Lohmann (DESY Zeuthen) spokesman
- W. Morse (BNL) beam diagnostics (BeamCal/GamCal) coordinator
- B. Pawlik (Cracow) simulations
- W. Lange (DESY) sensors
- TBD electronics
- W. Wierba (Cracow) LumCal laser alignment

U.S. Forward

- G. Haller, A. Abusleme, M. Breidenbach, D. Freytag (SLAC): BeamCal readout design
- Z. Li (BNL): BeamCal radiation damage issues
- B. Parker (BNL): machine interface issues
- M. Zeller, G. Atoian, V. Issakov, A. Poblaguev (Yale): GamCal design issues
- Y. Nosochkov (SLAC): Extraction line issues
- U. Nauenberg (Colorado): SUSY studies

Achieving the Design Luminosity Will Be a Challenge

- Bunch P₋(t) {*N*, *E*, *x*, *y*, *z*, σ_x , σ_y , σ_z , σ_{xy} , ψ_x , ψ_y }
- Bunch P₊(t) {*N*, *E*, *x*, *y*, *z*, σ_x , σ_y , σ_z , σ_{xy} , ψ_x , ψ_y }
- Instantaneous Luminosity:

Beam-strahlung

- $F = e(E + c\beta \times B)$. $B_{max} \approx 1KT$
- Instantaneous power radiated:
- $P_{\gamma} \approx 3\% P_{e}$ $N_{\gamma} \approx 1.5 N_{e}$
- Bethe-Heitler: $\gamma e \rightarrow e \ e^+e^-$
- $\sigma_{BH} \approx 38 \text{ mb}$
- <E> ≈ 1GeV
- Landau-Lifshitz: $ee \rightarrow ee e^+e^-$
- $\sigma_{LL} \approx 19 \text{ mb}$
- <E> ≈ 0.15GeV
- Other processes much smaller
- C. Rimbault et al., Phys Rev ST AB 9,034402 (2006).

Bethe-Heitler Pairs

For left and right detectors separately: N⁺/ $\sigma_x \sigma_v$ and N⁻/ $\sigma_x \sigma_v$.

W. Morse MDI March 6 2007

Vertical offset

Vertical Offset

W. Morse MDI March 6 2007

Bunch Height

Bunch Length

GamCal Detector Concepts

- 10⁻⁴ 10⁻⁶ X₀ to convert beam-strahlung gammas into e⁺e⁻ pairs
- Converter could be gas jet or a thin solid converter
- Magnet to separate pairs from beam electrons

Beam-strahlung $\gamma Z \rightarrow eeZ$

GamCal Backgrounds

W. Morse MDI March 6 2007

$\gamma Z \rightarrow eeZ vs. eZ \rightarrow eZee$

- Electron carries virtual gammas
- Landau-Lifshitz conversion of virtual gammas

$$\frac{dN}{d\omega} = \frac{2\alpha}{\pi} \frac{1}{\omega} \left[\ln \frac{1.1\gamma c}{\omega b_{\min}} - \frac{1}{2} \right]$$

Ratio of $\gamma Z \rightarrow eeZ$ vs. $eZ \rightarrow eZee$

16

π Production Compared to ee

- $\gamma p \rightarrow eep~\sigma \approx 10~mb$
- $\gamma p \rightarrow \pi \; N \;\; \sigma \approx 0.5 \; mb$ in resonance region
- $\gamma p \rightarrow \pi N \sigma \approx 0.1 \text{ mb} E > 4 \text{GeV}$
- ep \rightarrow e π N $\sigma \approx 10^{-3}$ mb
- Thus ep \rightarrow e π N is a negligible background

New Polarimeter/Gamma Chicane

BVEX2G Magnet Works Well

W. Morse MDI March 6 2007

Conclusions

- BVEXG1/BVEXG2 area looks good for GamCal.
- GamCal needs \approx 10m after BVEXG2
- Backgrounds to E and P detectors small.
- Backgrounds out of time by \approx 50ns.
- E and P detectors shielded by BVEXG1 magnet.
- Working on design, simulations, etc.

Extra Slides

$$F_1 = \frac{ey}{\varepsilon_0} \left(\rho_2 - \rho_1 + \beta^2 \left(\rho_1 + \rho_2 \right) \right) \approx \frac{2\rho_2 ey}{\varepsilon_0}$$

Perfect Collisions

