
LCFI V P k T h i l SLCFI Vertex Package – Technical Summary
Ben Jeffery, Erik Devetak, Mark Grimesy

(Oxford University) (Bristol University)

1

Package content
Nine new Marlin processors developed for the LCFI Vertex Package:Nine new Marlin processors developed for the LCFI Vertex Package:
♦ TrueJetFlavour - Determine MC flavour of reconstructed jets
♦ RPCut - Select ReconstructedParticles based on Track

parameters, number of hits etc.
♦ PerEventIPFitter - Find the event IP
♦ ZVTOPZVRES - Find secondary vertices topologicallyy p g y
♦ ZVTOPZVKIN - Find secondary vertices kinematically
♦ FlavourTagInputs - From vertices and tracks calculate discriminating

variables for the neural netvariables for the neural net
♦ NeuralNetTrainer - Train networks
♦ FlavourTag - Calculate network output (tag value)
♦ Plot - Calculate purity and efficiency for the tags

2

Typical Run

Select Tracks

Fit IP
Pure LCIO between each

processor – each part independent

Vertex

Calculate discriminating variables (inputs)

3Calculate network output

Example Steering

• Example steering files are distributed with the code. (LCFIVertex/steering)
• One for each part of the tagging process – could easily be combined to

i l t i filsingle steering file.
• Sensible default parameters from previous Brahms study. Full study with

Mokka input not yet performed.
• Also included is an example steering file for the rest of MarlinReco.

(SimTrackerHits taken to ReconstructedParticle jets using the
TrackCheater) as an example of how to obtain suitable input.)

Order of example steering files:

cheattracks+jetfind.xml
truejetflavour.xml
ipfit.xml Total Time ~ 1s per jet
zvres.xml
fti.xml
ft.xml

p j
(2.5GHz p4)

4

Installation issues, etc.

• Available now as tar archive (cvs soon) from:
http://www-flc.desy.de/ilcsoft/ilcsoftware/LCFIVertex/
Installs as standalone package in $MARLINWORKDIR/packages• Installs as standalone package in $MARLINWORKDIR/packages.

• No external dependencies. (uses boost library but this is included internally)
• Requires latest version of MarlinReco (v00-03) if using TrackCheater for

covariance matrices.
• Only tested under SL3 so far.
• Order ~5 gain in runtime without MARLINDEBUG.g
• Currently geometry independent (no gearfile needed).

• Although default procedure (example steering) is tested this is a first g p (p g)
release.

• Welcome comments/patches/bug reports – use the forum

• For more information than we can fit in here see the documentation
included with the code. (instructions in README)

5

()
• A documentation update will be included in the next release.

RPCutProcessor

• Cuts ReconstructedParticles either directly from a collection or from those
pointed to by another ReconstructedParticle (ie from a Jet)
Eith t f i ti ll ti t ll ti• Either cuts from existing collection or creates a new collection

• As the rest of the package only works on ReconstructedParticles with a
geometric Track representation, those without are cut.
(i R t t dP ti l tT k () t () t)(ie. ReconstructedParticle::getTracks().empty() == true)

• Input
– Set of ReconstructedParticles
– (eg Jets from SatoruJetFinder)

• Outputp
– Set of ReconstructedParticles

• Key Parameters
– SubParticleLists – Cut from an RP not a collectionSubParticleLists Cut from an RP not a collection
– WriteNewCollection – Leave input untouched
– Cut Values

Used here to clean tracks for IP Fitting,

6

Used here to clean tracks for IP Fitting,
Vertexing and Flavour Tag calculation,
but can be used for any other purpose.

IP Fitter
Input Tracks

• Input
– Set of ReconstructedParticles

(eg From RPCut)
Fit TracksRemove track with

highest chi squared(eg From RPCut)
• Output

– Vertex

g q

no

• Key Parameters
– Vertex Probability Threshold
– Default IP (If no vertex is found then

th d f lt i d)

Reached probability
threshold?

the default is used.)

Done

yes

This processor was developed as a short term “place holder” as this
information was needed for the tag, but was not available in the Marlin/LCIO
framework.

The ZVTOP vertex fitter was recycled, the processor should be considered sub-

7
optimal until something more clever is implemented – ideally that used at SLD
(average over events in xy plane)

ZVTOP-ZVRES & ZVKIN Processor

• Input
– ReconstructedParticles - Jets

(ti l) V t IP

Both processors find set of vertices in jets:
ZVRES – Topological
(D J k NIM A 388 (1997) 247)– (optional) Vertex – IP

• Output
– ReconstructedParticles

(D. Jackson, NIM A 388 (1997) 247)
ZVKIN – Kinematic
(Described in appendix to J. Thom SLAC-R-585, Jan 2002)

DecayChains

– ReconstructedParticles
DecayChainTracks

Tracks need to be filtered for quality previously
(eg by RPCut) and must have well-formed,
accurate covariance matrices– Vertices

• Key Parameters
– Manual IP

accurate covariance matrices.

ZVRES previously studied with Brahms, also
tested in this framework. (See Ben Jeffery’s talk at the
Valencia ‘06 orkshop)– Output Chi Squared

(Chi squared of tracks in vertices)
– Algorithmic parameters

Valencia ‘06 workshop)

ZVKIN is highly experimental.

The output for both algorithms is identical and always contains at least one
vertex (the IP).

8The output is in the form of decay chains:

Storage Of Vertexing Result

• ZVTOP Produces “Decay Chains” – sets of one or more vertices eg:

IP IP

In LCIO each Vertex has an accompanying ReconstructedParticle
which represents the decaying particle. This holds kinematic
information Each ReconstructedParticle points to its “startVertex”information. Each ReconstructedParticle points to its startVertex .

Reconstructed Particle
2 3

Vertex

(track) 4 5 6 7

IP IP

1

Accompanying
Reconstructed Particle

9

Storage Of Vertexing Result
R d P i l

IP IP
Accompanying
Vertex

Reconstructed Particle
(track)2 3 4 5 6 71

Accompanying
Reconstructed Particle
Reconstructed Particle
(decay chain)

If these are in the same event they share the IP Vertex:
4 5 6 72 31

IP

ReconstructedParticle
representing decay chain Result is three collections:

V tipoints to all tracks in that
chain (one for each jet)

Vertices
DecayChainTracks
DecayChains

10Code examples of accessing this information are in the documentation

11

