

ILC Software Workshop at LAL – Orsay - May 2007 Paulo Mora de Freitas - L.L.R. – Ecole polytechnique

Talk plan

- Mokka overview and facilities
- What's new since 6.0 (Cambridge)
- What's coming soon
- Problems

Input : events

- Available interfaces :
 - Phytia HEPEvt (ASCII)
 - Phytia hepevt "Brahms-like" (ASCII)
 - Stdhep (binary)
 - Guinea Pig
- Particle gun :
 - Shoot individual particles
 - Possibility of smearing of position, direction and momentum

Output: hits

- Native ASCII format
 - A « Run » corresponds to a directory
 - Every sub-detector creates one or more hit files per event
- LCIO
 - Access to data via a high-level interface
 - API for C, C++, Java and f77
 - Automatically integrated to MARLIN and JAS

The simulation itself

- Full Geant4 based simulation
- Job controlled by a « steering file » and native commands of Geant4 and Mokka
- The user can choose among the Physics Lists supplied by Geant4:
 - We advice to use always xxx_HP (highprecision neutron models) in physics lists!
- User run time control on simulation, thanks to the User Actions pluggins

Plugin user actions

- Possibility of run « user actions » via plugin, at beginning/end of run, event, track or every step:
 - virtual void *BeginOfRunAction* (const <u>G4Run</u> *)
 - virtual void EndOfRunAction (const <u>G4Run</u> *)
 - virtual void *BeginOfEventAction* (const <u>G4Event</u> *)
 - virtual void EndOfEventAction (const <u>G4Event</u> *)
 - virtual void *PreUserTrackingAction* (const <u>G4Track</u> *)
 - virtual void PostUserTrackingAction (const <u>G4Track</u> *)
 - virtual void UserSteppingAction (const <u>G4Step</u> *)

Stable but flexible Geometry system

- Only one Geometry database (the Reference)
- But the user can easily:
 - clone the database and reuse the sub-detectors
- or, at launch time:
 - Re-scale the detector (*scaling models*)
 - And/or <u>cook</u> a new model
- Mokka provides also some facilities to modify interactively the model rendering (*visioning* models), for debugging.

« Scaling » a model (since aug05)

• The user is able to modify the model's main parameters at launch time, ex :

/Mokka/init/detectorModel LDC01

/Mokka/init/globalModelParameter TPC_outer_radius 800

Relational Geometry database

A detector model sample: "D08"

« Cooking models » (since jun06)

• The user is able to modify the model ingredients at launch time, ex :

/Mokka/init/detectorModel LDC01

/Mokka/init/EditGeometry/rmSubDetector SHcal01

Visioning models (since mar06)

• The user is able to interactively modify the model rendering, ex :

Idle>/Mokka/Visu/Detector/Visibility hcal false

Final detector and prototypes into the same simulation engine!

Test beams and « classic » models don't scale

Model	Туре	Obs.:
Dxxaaa	baseline TDR	22 versions
<i>TB</i> aaa	Test beam	27 versions

where :

xx = "serial number" of the model aaa = detail

Examples :

- "D12", "D12scint", "D14_CMOSVTX",
- TBDesy0506_dchxy_new, TBCern1006_dchxy_new, etc.

Naming convention for new scaling models

- Model name = XXXYY_ZZtt where:
 - XXX = detector concept (LDC, SID, GLD)
 - YY = baseline:
 - 0 = Tesla TDR
 - 1 = LDC Detector Concept Studies
 - ZZ = release number (serial)
 - tt = Details (Rp = Hcal RPC, Sc = HCal Scintillator, etc.)
- Examples :
 - LDC00_02Sc, LDC01_02Sc, LDC00_03Rp, LDC00_03Sc, etc.

What's new since 6.0 - I

- >Three main releases and two small patches since 6.0
 - ► Automatic creation of GEAR files
 - Mokka CGA API as the first GearPointProperties and GearDistanceProperties GEAR implementation
 - ≻New Plugins
 - Several improvements concerning MySQL
 - ► Material Descriptions using G4NistManager
 - ➢New steering command for initializing the seed of the random engine (/Mokka/init/randomSeed)

What's new since 6.0 - II

- ➢ Final Detector models:
 - SEcal01 with three different sets of radiator thickness
 - ≻New detector models LDC00_02Sc, LDC01_02Sc:
 - ➢new tpc scalable driver, EDT, Hcal and yoke improvements, realistic scalable vertex. (mainly Predrag, Frank, Adrien)
 - ≻New detector models LDC00_03Rp, LDC00_03Sc:
 - ➤Tube scalable driver with crossing angle support, LumiCal, Ftd and masks scalable drivers, etc. (mainly Bogdan Pawlik)

What's new since 6.0 - III

➤ A lot of job concerning the Test Beams:

➢New coordinate system for the Test Beam setups of 2006

Several ecal, drift chambers and scintillator new drivers and fixes for the DESY and CERN test beams

➢ First implementation of DESY 5T magnet used for TPC prototype development (setup TM06)

And several fixes for memory leaks, turn around for Geant4 bugs, etc...

Coming soon I : new SEcal03

- Standalone scalable driver (no more creating temporary databases)
- A lot of run time parameters
- Implements "true" wafers, following the actual EUDET guidelines
- Odd number of layers 🙂
- No more complicate Boolean shapes in end cap modules (should be faster) 🙂

SEcal03: end cap modules

SEcal03: "true" wafers in slabs

SEcal03, detail: fiber gap between slabs

Coming soon II : new SHcal03

- Standalone scalable driver (no more creating temporary databases)
- Almost the same as the actual LDC01 one (both scintillator and RPC modes)
- But

– Just two modules per stave 🙂

• Still missing: a decision concerning the Hcal rings, if one, where...

$\overline{SEcal03} + \overline{SHcal03}$

So coming soon : a new DOD model

- We have almost all the pieces we need to compose it right now, but still missing:
 - Final details concerning Ecal, Si devices, etc.
 - Hcal rings, yes or not, where?
 - etc.
- To avoid a database inflation of intermediate models, could we still wait a bit ?

Main problems I: Documentation

- Only release notes are up to date:
 - No friendly documentation to get started
 - Mokka Web page is obsolete, missing descriptions of the current models in the DB
- Proposal for a solution:
 - To have concerned people helping to make up to date the Mokka site (it's Zope/Plone!)
 - To use automatic tools to retrieve information from database on the fly, to provide model descriptions via the web site

Main problems II: Coordination

• Works nice for the Test Beams developments, thanks to the CALICE structure

BUT

- Missing for the final detector models:
 - Who decides what should be the next DOD model?
 - Who is the responsible for each sub-detector part in simulation?

Thanks a lot!

- Mokka became *de facto* a very nice, friendly informal collaboration
- Many thanks for a lot of people helping to develop and to maintain it

Please, fell free to join... and to enjoy it!